智库观察丨超拟人大模型和个性化场景化的AI服务

简介: 以情绪价值为核心的超拟人大模型能够使AI 拥有自己的“个性”和“情感”,从而呈现出丰富的立体化“人格”,为用户提供量身定制的AI服务。

云栖战略参考 2023版头_副本.png

《云栖战略参考》由阿里云与钛媒体联合策划,呈现云计算与人工智能领域的最新技术战略观点与业务实践探索,希望这些内容能让您有所启发。

自1950年艾伦·图灵推出著名的图灵测试到2022年ChatGPT的火爆,人类从未停止对AI对话智能的探索。

在大模型问世之前,聆心智能便已经致力于使用算法和AI技术,让系统能够通过图灵测试,这也是“超拟人大模型”名称的由来。所谓“超拟人”,即模型在设计时建模了超过十个维度的人类属性,一旦应用,模型在提示词配置和人设设定方面将会表现出非凡的效率和卓越的效果。

我们希望可以让AI系统基于模型精准理解用户需求——让AI不仅能够清楚地听懂用户的话,还能够在情感和柔性层面提供积极的回应,确保用户在与AI交流的过程中体验到愉悦和满足。

在构建可控、拟人和安全的新一代大模型系统上,聆心智能取得了不少成果:2020年, 发布中文对话预训练模型CDlal-GPT;2022年,推出中文对话预训练模型OPD和超拟人产品“AI乌托邦”;2023年,推出共情陪伴大模型Echo和超拟人大模型CharacterGLM。

CharacterGLM 以智谱最新一代GLM大模型为基座,结合聆心智能多年积累的拟人化的、超长轮对话的数据和算法训练而成,具备660亿参数、8K上下文长度、更高的性能推理能力,以及海量数据和工程积累。

以情绪价值为核心构建超拟人大模型

“超拟人大模型”的核心价值,可以用四个字来概括——情绪价值。情绪价值不同于提升生产力这样的实用性价值,它在诸多功能型大模型,或垂直领域大模型中是绝无仅有的。

生活中处处充满了情绪价值的交互,无论是与伴侣、孩子、家人,还是在工作场合与同事、上司的交流,情绪价值都扮演着重要角色。想象一下,在工作场合,如果上司总是面无表情,除了工作之外毫无交流,那将会是何等痛苦的体验。而通过良好的情绪价值交付,可以有效提高员工的满意度和幸福感,从而提升工作效率,为公司节省投资成本。因此,对于人力资源管理者来说,未来必须重视情绪价值的交付。

今天,人工智能也将承担起传递情绪价值的重任,“超拟人大模型”正是向用户交付这种情绪价值。

“超拟人大模型”与通用任务型大模型不同,它在个性化、场景化和情感化方面有独特的创新和创意。个性化是指根据用户偏好定制AI角色;场景化是指满足各类应用交互场景下的AI对话生成需求;情感化则是与用户建立情感链接,创造丰富的情绪价值。

在超拟人大模型的系统架构中,外界普遍认为最核心的是实现可控、可配、安全的大模型。但我认为最重要的是所谓的人格层,包括人格、社会、能力、思考、知识、价值观这六个层面。这些层面并非空谈,我们通过这六个方面的建模,全面支撑了整个“超拟人大模型”的设计和研发。

得益于这六大能力,CharacterGLM超拟人大模型能够使AI拥有自己的“个性”和“情感”,在交流过程中不局限于表面机械性话术,而是呈现出丰富的立体化“人格”,具有更符合人类逻辑的思考能力、动作表情等非语言信息表达能力和角色的延续性记忆。

构建超拟人大模型系统的挑战

构建超拟人大模型系统的过程也存在诸多挑战,其中有三个挑战最为关键。

首先是上下文长度限制。众所周知,大模型在处理上下文长度方面存在明显的限制。如何使大模型在超长轮对话中有效容纳上下文,并理解对话过程中的内容,包括记忆能力的展现,这是一个技术性挑战。

其次,更为重要的是情理兼具。所谓“拟人”,仅凭情商是不够的,如果在智商方面表现不佳,就会给人留下一个笨拙的人工智能的印象,仅能提供基本的互动。最新一代的大模型在智商方面呈现出令人瞩目的水平,但对于我们来说,关键在于如何满足同时具备高情商与高智商的需求。

最后是用户侧记忆问题。由于大模型无法主动记忆用户需求,且本质上是以自我为中心的单体,所以不可能记住每个用户输入的内容。因此,实质的记忆对于目前的大模型来讲是不太现实的。

针对这些挑战,我们设计了一套高效的应用架构。基于CharacterGLM推理实例,我们对其整个Prompt空间进行了高效管理。这种工程方法并不稀奇,关键在于大模型本身如何高效理解提示词。不同的大模型在理解提示词的能力上存在差异。我们的大模型可以很好地理解围绕人设、人格所设定的一些关键词,哪怕它们非常简单、简短。因此,虽然我们的大模型上下文长度只有1K或8K,但它的利用率非常高,帮助我们实现了平滑的多轮对话体验。

超拟人大模型的应用场景及服务模式

在超拟人大模型的商业化探索上,聆心智能也正在积极推进。目前,已成功入局教育、虚拟陪伴、游戏娱乐等领域。

儿童教育是一个非常重要的应用场景。我们与国内一家知名儿童教育公司合作推出了一款产品,该产品自上线以来运行情况良好。在大模型的加持下,原有IP“小雨点”的活跃度显著提升,因为它的后端不需要大量教研老师编辑内容,通过接入大模型,即可与儿童进行相应的互动。此外,“小雨点”具有独特的角色设定,能够与孩子们进行温馨的对话、积极的互动,并提供准确的知识引导。

对于儿童,特别是4-8岁的儿童而言,他们使用平板更多的是为了寻找陪伴而非学习。在这个阶段,儿童所提出的问题通常涉及个人情感,比如家庭中的矛盾。在这时,“小雨点”会提供情感支持和鼓励,帮助他们以积极态度面对问题。

第二个应用场景是心理健康。我们与国内顶尖的心理健康和精神健康领域的互联网医疗平台合作打造数字人,为他们的心理亚健康用户,或者说轻度焦虑与抑郁患者提供7x24小时的心理陪伴服务。

这是我们首次完成AIGC 赋能心理健康领域的行企应用。AI围绕认知、情绪和行为维度进行评估和干预,以多模态对话系统为核心交互框架,让AI和用户产生足够的情感链接,生成用户个人模型及个性化治疗方案。

第三个应用场景是数字员工。我们提供了一整套数字员工解决方案,涵盖行政、人力资源、财务、法务等领域,使得中小企业能够根据自身企业文化配置数字员工,并提供有温度的数字员工服务。

第四个应用场景是数字分身。我们为网络红人、主播、偶像等知名人士制作数字分身,创造出符合他们原有风格、身份背景、喜好和专业知识背景的虚拟形象。通过AI,为它们生成个人空间和虚拟朋友圈,以及个性化的聊天对话,并复刻了真实的语音。粉丝们对此给予了高度认可。在与数字分身的二十轮对话中,只要有四五轮能够展现出原人物的风格特色,用户就会感到满意。当然,这也要求数字分身避免出现幻觉或上下文衔接不当等问题。如果对话内容驴唇不对马嘴,就会让用户出现很强的跳脱感。

在我们提供的服务中,有三种简明直接的模式可供客户选择。

首先是开放API。我们拥有一个专用的开放API 的平台,让客户可以在里面创建自己虚拟身份的形象和角色。通过使用我们简洁的API,客户可以轻松地与其虚拟形象进行交流,从而满足其不同场景的业务需求。

其次,我们提供云端私有化的解决方案。云服务平台作为中立的第三方,提供必要的在线计算资源。对于那些资源有限的客户,可以在云平台上获得授权使用我们的模型,并允许客户上传自己的数据以训练模型,从而创建一个完全定制化、符合其业务需求的专属模型。同时我们也提供API 接口,便于客户利用这些模型。在此过程中,我们无法访问客户数据,客户也不能下载模型。

最后是本地私有化交付模式。我们可以将整个模型的代码及其Checkpoint文件完整地交付给客户。客户可以将其部署在自己的算力空间或计算中心内,实现更大规模的、持续性的服务。

未来,聆心智能也将再接再厉,继续推进超拟人大模型应用生态的构建,致力于用AI技术给人类带来福祉,推动“人和AI共融”型社会的到来。

相关文章
|
6天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
62 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
7天前
|
机器学习/深度学习 人工智能 算法
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
X-AnyLabeling是一款集成了多种深度学习算法的图像标注工具,支持图像和视频的多样化标注样式,适用于多种AI训练场景。本文将详细介绍X-AnyLabeling的功能、技术原理以及如何运行该工具。
52 2
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
|
15天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
68 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
17天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
58 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
6天前
|
存储 人工智能 开发工具
AI场景下的对象存储OSS数据管理实践
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
49 10
|
22小时前
|
人工智能 安全 搜索推荐
到2028年,30%的财富500强企业将使用仅支持AI的服务渠道
到2028年,30%的财富500强企业将使用仅支持AI的服务渠道
|
6天前
|
弹性计算 人工智能 数据管理
AI场景下的对象存储OSS数据管理实践
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
51 10
|
16天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
70 10