m基于码率兼容打孔LDPC码ms最小和译码算法的LDPC编译码matlab误码率仿真

简介: m基于码率兼容打孔LDPC码ms最小和译码算法的LDPC编译码matlab误码率仿真

1.算法仿真效果
matlab2022a仿真结果如下:

0eddd5a773be7212c709868197075d0f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(Belief Propagation)译码算法进行迭代译码,提高了译码的准确性和可靠性。

一、LDPC编码

   LDPC编码算法基于稀疏矩阵的乘积码,通过奇偶校验位来纠正传输过程中的错误。其核心思想是通过尽可能低的密度奇偶校验位来构造大量的码字,使得每个码字的校验和为0。

    设原始信息位长度为k,校验位长度为r,总码字长度为n=k+r。将原始信息位放入一个长度为k的行向量中,将校验位放入一个长度为r的列向量中。然后构建一个(n-k)×n的校验矩阵H,其中每一行是一个奇偶校验位,每一列是一个码字。

   为了实现码率兼容,引入打孔操作。打孔操作是指在码字中删除一些校验位,使得总码率在一定范围内可调。具体实现时,可以按照一定规则随机删除一些校验位,或者根据码率要求计算需要删除的校验位数。打孔操作后,可以得到一个新的校验矩阵H',其中每一行仍是一个奇偶校验位,但每一列可能不再是完整的码字。

LDPC编码算法的实现步骤如下:

生成随机的(n-k)×n的校验矩阵H;
根据要求进行打孔操作,得到新的校验矩阵H';
将原始信息位按顺序写入一个长度为k的行向量中;
根据校验矩阵H'计算校验和,得到长度为r'的列向量;
将原始信息位和校验位串联起来,得到长度为n的码字向量;
将码字向量进行比特反转,得到最终的LDPC码字。

    最小和译码算法(Min-Sum Algorithm)是LDPC译码的一种简化算法,相较于标准的置信传播(Belief Propagation,BP)算法,具有更低的计算复杂度。

置信传播算法基础

   BP算法是LDPC译码的基础算法,通过迭代更新变量节点和校验节点的置信度信息来进行译码。其核心步骤包括初始化、水平步骤(变量节点到校验节点)、垂直步骤(校验节点到变量节点)和判决步骤。

最小和译码算法原理

   最小和算法在BP算法的基础上进行了简化,用最小值和次小值的运算代替了BP算法中的对数运算和乘法运算,从而降低了计算复杂度。具体来说,在垂直步骤中,最小和算法将校验节点传递给变量节点的信息简化为:

3.MATLAB核心程序
```for i = 1:Iters
% 更新校验节点消息
for m = 1:M
% 获取与当前校验节点相连的变量节点索引
tmp2 = H_row(m,2:(H_row(m,1)+1));
% 移除超出范围的索引
tmp2(tmp2>N) = [];
for n = tmp2
% 再次获取与当前校验节点相连的变量节点索引
array_n1 = H_row(m,2:(H_row(m,1)+1));
% 移除当前节点自身
array_n1(array_n1==n) = [];
% 移除超出范围的索引
array_n1(array_n1>N) = [];
% 更新校验节点消息
Message_check(m,n) = min(abs(Message_variable(m,array_n1)))*prod(sign(Message_variable(m,array_n1)));
end
end

% 更新变量节点消息
for n = 1:N
    % 获取与当前变量节点相连的校验节点索引 
    tmp1 = H_col(n,2:(H_col(n,1)+1));
    % 移除超出范围的索引  
    tmp1(tmp1>M) = [];
    for m = tmp1
        % 再次获取与当前变量节点相连的校验节点索引
        array_m1 = H_col(n,2:(H_col(n,1)+1));
        % 移除当前节点自身
        array_m1(array_m1==m) = [];
        % 移除超出范围的索引
        array_m1(array_m1>M) = [];
        % 更新变量节点消息
        Message_variable(m,n) = vi(n) + sum(Message_check(array_m1,n));
    end
end

% 进行硬判决,生成解码序列w  
for n =1:N
    % 获取与当前变量节点相连的校验节点索引  
    tmp1 = H_col(n,2:(H_col(n,1)+1));
    % 移除超出范围的索引
    tmp1(tmp1>M) = [];
    % 判断硬判决结果  
    if vi(n)+sum(Message_check(tmp1,n))>=0
        w(n) = 0;
    else
        w(n) = 1;
    end
end

%校验判决校验判决,检查是否满足所有校验方程,若满足则提前结束迭代  
if sum(mod(w*H(1:M,1:N)',2))==0% 计算校验和,若为零则说明满足所有校验方程 
    break;
end

end
```

相关文章
|
2月前
|
数据可视化
基于MATLAB的OFDM调制发射与接收仿真
基于MATLAB的OFDM调制发射与接收仿真
|
1月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
145 0
|
1月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
175 15
|
2月前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
423 5
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
2月前
|
机器学习/深度学习 边缘计算 算法
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
173 0
|
2月前
|
人工智能 供应链 新能源
电动汽车参与运行备用的能力评估及其仿真分析(Matlab代码实现)
电动汽车参与运行备用的能力评估及其仿真分析(Matlab代码实现)

热门文章

最新文章