蚂蚁金服人工智能部技术总监李小龙:智能金融实践

简介: 7 月 22 - 23 日,在中国科学技术协会、中国科学院的指导下,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办,云栖社区作为独家直播合作伙伴的 2017 中国人工智能大会(CCAI 2017)在杭州国际会议中心盛大召开。


image
蚂蚁金服人工智能部技术总监李小龙

7 月 22 - 23 日,在中国科学技术协会、中国科学院的指导下,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办,云栖社区作为独家直播合作伙伴的 2017 中国人工智能大会(CCAI 2017)在杭州国际会议中心盛大召开。

在本次大会上,蚂蚁金服人工智能部技术总监李小龙作为 CCAI 2017 智能金融论坛主席为参会者带来了《蚂蚁金服智能金融实践》的分享。

以下内容根据李小龙本次主题演讲整理,略有删减:

今天早上我们的副总裁、首席数据科学家漆远博士给大家讲了很多金融智能创新的例子,我主要是从《蚂蚁金服智能金融实践》这方面给大家作阐述。

首先,我们认为金融服务是AI创新的最好场景之一,主要是三个理由:

  • 第一,场景非常丰富,打开支付宝我们知道这不仅是一个支付工具,可以把AI应用到理财、投资、贷款、征信等业务中,还可以把AI结合到安全、保险、客服里。
  • 第二,数据量大,全球数十亿用户、日常交易量巨大,另外天然业务数据化,比起其他行业来说,业务数据化程度要好得多。
  • 第三,具有很大社会意义,我们的诉求是通过AI降低金融的门槛,能够服务80%的用户,传统金融可能只能服务到20%的用户。

对于蚂蚁金服来说,我们是一家以信用为基础,AI驱动的有想象力的金融生活公司,致力于为全球20亿人提供普惠金融服务。这里面有三个点:

一个是信用等于财富,我们想不断努力地往这方面走,建设信用社会,希望大家以后通过自己的信用记录就可以做很多的事情,比如说免交押金等。

第二点我们认为技术是推动平等的手段,这里面AI驱动至关重要。

第三个是我们最终是要实现普惠金融,AI是普惠金融的推动器。这里列出了有代表性的蚂蚁金服的智能金融的场景应用,比如微贷和花呗的准入模型和反套现模型,然后是账户安全、交易安全、反洗钱、反作弊、反欺诈等,这些都是金融领域的核心问题。还有智能客服,这是我们最近做得比较有突破的事情,包括猜你问题、智能问答和异常检测等。还有在财富方面,比如说怎样做理财产品的精准推荐,还有社区问答、智能投顾等,还有芝麻信用也是我们比较重要的一块,是通过用户画像做评估。

最后是在保险,我们觉得保险是AI可以发挥很大作用的场景。目前我们在人工智能业务架构上大致包含几个方面:底层的算法,包括各种各样的最先进的算法都在研究;中间是沉淀的一些工具,包括异构学习、模型服务、AI共享等;最上面的是产品,包括搜索推荐、智能营销、智能客服、金融大脑、舆情分析等;最终是通过人工智能的平台赋能我们蚂蚁内部的业务,以及将这个平台作为开放的方式输出给所有的金融机构,这就是说蚂蚁更注重于Tech的方面,把Tech能力开放给金融机构。

因为时间的限制,下面只讲一个例子,就是我们的智能客服助理。打开支付宝,可以看到“我的客服”图标,然后进去可以看到这样一个界面,主要包括两块,一个是“猜你问题”,这里你不需要输入问题我们就已经知道了你可能碰到的问题,我们基于用户过去的行为和特征来进行预测。如果你觉得这个问题没有猜中,你也可以在下面的机器人对话框直接输入你的问题,比如说你输入“余额宝的收益怎样计算”,我们会给一个详细的公式。在“猜你问题”里面,我们有一系列的创新,比如说特征层面,把用户的行为轨迹加进来,原来只是人工设计的因子特征。

实际上在用户问问题之前的一段时间,你在支付宝进行了什么操作是非常重要的,这些特征加入进来就提高了“猜你问题”的准确率。其次,用深度学习代替线性模型也获得了很好的效果。另外,是通过数据挖掘从用户原始问句得到标准问题,再从标准的问题得到标准答案,这样简化了知识库的建立过程并提升了精度。最后是数据闭环,模型能够在线上不断自学习和提升。总体来说,这些创新的效果是使得点击率从最开始的37%,到现在72%,有了巨大的提升。

前面提到了知识库的创新,背后其实就是基于语义的大规模聚类算法。支付宝上每天都有大量的求助,每天有四、五百万的求助量,机器人也有四、五十万的求助问题,这些问题我们仔细看,其实很多都是同一个诉求的不同的说法,通过聚类找到这些标准问题和标准答案以后,我们可以减少大量的人工去做这样的处理。

在机器人问答算法创新方面,最主要的是一方面采用了深度学习,像DSSM和LSTM结合,尤其是用户行为轨迹编码,我们改进了DSSM的结构,用时间序列的描述,加进历史的操作,比如你问怎么退款,有很多可能,你可能是转账退款,也可能是信用卡退款等等,但是比如看你之前的操作,我们就知道你是在转账以后遇到的问题,然后才能问这个,这样根据用户历史行为的LSTM编码,加上问句的DNN编码我们就很容易定位到知识点是“转账到账户转错了怎么办?”,而不是“为什么银行卡转账被退回来了?”

除了上面这些个创新技术以外,我们还借鉴采用了其他的技术,比如说Decomposable Attention Model,这也是最近比较热的深度学习上的技术,此外,包括语义匹配树,包括我们说的问题推荐以及最重要的系统优化,把算法和系统结合起来,这样使得我们的结果是每天支付宝上日常求助四、五百万,绝大部分可以走自助的渠道,自助占比达到94%。而去年双十一自助率的比例达到97%,也就是我们很多的人力可以节省下来,同时机器人满意度超过了人工的3个百分点。

最后我们还有很多其他的创新列在这里,左边的就是我们一直创新的产品和场景,右边是我们背后的一些技术,这些创新就是说我们将AI技术和支付宝和蚂蚁金服的很多场景进行结合,然后基于很多的创新的Idea,将它落于实际场景之中。

前面就是我的分享,基本上就是智能金融在蚂蚁金服的实践,谢谢大家。

来源:CSDN
大会资料分享:点击查看
大会官网:点击进入

目录
相关文章
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
113 10
|
21天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
13天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
125 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI写作新时代:自然语言生成技术与写作助手的结合
AI写作新时代:自然语言生成技术与写作助手的结合
52 16
|
21天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
129 32
|
25天前
|
人工智能 安全 算法
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
2024年12月11日,由中国计算机学会计算机视觉专委会主办的“打造大模型时代的可信AI”论坛在上海举行。论坛汇聚了来自多家知名学术机构和企业的顶尖专家,围绕AI的技术风险与治理挑战,探讨如何在大模型时代确保AI的安全性和可信度,推动技术创新与安全治理并行。论坛重点关注计算机视觉领域的最新进展,提出了多项技术手段和治理框架,为AI的健康发展提供了有力支持。
71 8
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
|
6天前
|
存储 人工智能 监控
AI视频监控技术在公租房管理中的应用:提升监管精准度与效率
该AI视频监控系统具备1080P高清与夜视能力,采用深度学习技术实现高精度人脸识别(误识率1%),并支持实时预警功能,响应时间小于5秒。系统支持私有化部署,保障数据隐私安全,适用于大规模公租房社区管理,可容纳10万以上人脸库。基于开源架构和Docker镜像,一键部署简单快捷,确保24小时稳定运行,并提供详细的后台数据分析报表,助力政府决策。
|
25天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
133 2
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
10天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
|
11天前
|
人工智能 供应链 安全
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。