使用Python和OpenCV构建具有人体检测功能的摄像头录制器

简介: 使用Python和OpenCV构建具有人体检测功能的摄像头录制器

介绍


在本教程中,我们将探讨如何使用Python和OpenCV构建一个具有人体检测功能的摄像头录制应用程序。该应用程序允许我们从计算机的摄像头录制视频,并自动检测和提取人体存在的部分。借助YOLO目标检测算法的强大功能,我们可以轻松识别和隔离人体动作。让我们逐步深入,看看如何创建这个应用程序。


前提条件


在开始之前,请确保系统上安装了以下依赖:

  • Python 3.x
  • OpenCV库
  • 预训练的YOLO模型(yolov3.cfg和yolov3.weights)
  • VLC媒体播放器(或任何其他兼容的媒体播放器)
  • ffmpeg(命令行工具)用于视频提取


强大的技术:Python、OpenCV、YOLO和FFmpeg


项目配置


  1. 从GitHub上克隆项目存储库。
  2. 您可以在这里找到存储库。
  3. 在存储库中,您将找到一个详细的README文件,其中提供了有关设置项目的逐步说明。它包括有关先决条件、安装步骤和其他资源的信息。
  4. 按照README文件中的说明安装所需的Python包,下载预训练的YOLO模型,并在系统上设置VLC媒体播放器和ffmpeg。
  5. README文件还提供了如何配置项目的指南,包括YOLO模型文件的放置和应用程序的使用。

项目代码文件:用于摄像头录制和人体检测的Python脚本代码链接:https://github.com/g4lb/camera-recorder-with-human-detection


从摄像头录制视频

  1. 在您喜欢的代码编辑器中打开camera_recorder.py文件。
  2. 在文件内,您将找到使用OpenCV捕获摄像头视频所需的代码。这包括初始化视频捕获、设置所需的视频分辨率和配置视频编解码器。
  3. 您可以根据需要修改配置参数。例如,您可以通过更改frame_width和frame_height变量的值来调整分辨率。此外,您可以通过修改fourcc变量来尝试不同的视频编解码器。
  4. 运行camera_recorder.py脚本以开始从摄像头录制视频。您将看到来自摄像头的实时视频源,并且将创建一个新的视频文件并保存在"records"文件夹中。


通过参考项目存储库中的camera_recorder.py文件,您将找到所有必要的配置详细信息和录制视频的代码实现,使用Python和OpenCV从摄像头录制视频。


提取人体运动


在视频中检测到人体后,我们将提取存在人体的部分。所有的配置详细信息和代码实现都可以在项目存储库的human_detection.py文件中找到。


  1. 在您喜欢的代码编辑器中打开human_detection.py文件。
  2. 在文件内,您将找到使用YOLO进行人体检测并提取表示人体运动的帧所需的代码。这包括初始化YOLO模型、设置置信度阈值(conf_threshold)和定义后处理步骤。
  3. 您可以根据需要修改配置参数。例如,您可以通过更改conf_threshold变量的值来调整置信度阈值。较高的值将导致更严格的检测,而较低的值可能包括更多的假阳性。

通过参考项目存储库中的human_detection.py文件,您将找到所有必要的配置详细信息和代码实现,使用YOLO和OpenCV从录制的视频中提取人体运动。

演示:人体检测在实际操作中 — 出现并消失两次


将检测到的人体部分保存为视频


一旦我们有了表示人体运动的帧,我们将它们保存为单独的视频文件。所有的配置详细信息和代码实现都可以在项目存储库的human_detection.py文件中找到。


  1. 在您喜欢的代码编辑器中打开human_detection.py文件。
  2. 在文件内,您将找到将表示人体运动的帧保存为单独的视频文件所需的代码。这包括配置输出文件名、格式和文件路径。
  3. 您可以根据需要修改配置参数。例如,您可以更改输出文件格式、调整文件命名约定或指定不同的输出目录。
  4. 运行human_detection.py脚本以开始人体检测过程。脚本将分析"records"文件夹中的录制视频文件,检测人体运动并标识表示人体存在的帧。
  5. 视频的检测部分将以"video_timestamp_human.mp4"(例如,"video_2023–07–06_11–52–34_human.mp4")的格式保存为单独的MP4文件。

通过参考项目存储库中的human_detection.py文件,您将找到所有必要的配置详细信息和代码实现,使用OpenCV和ffmpeg将表示人体运动的帧保存为单独的视频文件。录制的视频和检测到的人体部分:records与output文件夹


挑战:subprocess.run与subprocess.call


在项目的实施过程中,使用子进程模块执行ffmpeg命令时,您可能会遇到一个挑战。子进程模块中有两个常用的函数:subprocess.run和subprocess.call。这两个函数都可以用于运行外部命令,但它们在行为和返回值方面存在一些差异。


subprocess.run函数在Python 3.5中引入,与subprocess.call相比,提供了更强大和灵活的接口。它允许捕获命令的输出,处理错误,设置超时等。另一方面,subprocess.call是一个更简单的函数,运行命令并等待其完成,不捕获输出或处理错误。


在使用ffmpeg从检测到的帧创建视频时,您可能需要在subprocess.run和subprocess.call之间做出选择。如果需要捕获输出或在视频创建过程中处理潜在的错误,subprocess.run是推荐的选择。但是,如果只需要执行命令并等待其完成而不捕获输出,subprocess.call可以是一个更简单的选择。

ffmpeg命令:从帧创建检测到的人体视频剪辑

根据您的具体需求使用适当的函数。请确保处理在执行ffmpeg命令时可能发生的错误或异常。比较:subprocess.run与subprocess.call

结论
在本教程中,我们使Python和OpenCV构建了一个具有人体检测功能的摄像头录制应用程序。我们学会了如何从摄像头录制视频,使用YOLO检测人体,并提取具有人体运动的部分。借助OpenCV和YOLO的强大功能,我们可以自动化检测和隔离人体运动的过程,为各种应用开辟了可能性,如监视、活动监测等。

相关文章
|
1月前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
20天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
19天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
45 3
|
1月前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
64 2
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
27天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
1月前
|
JSON 前端开发 API
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API
|
1月前
|
存储 API 数据库
使用Python和Flask构建简单的RESTful API
使用Python和Flask构建简单的RESTful API
|
1月前
|
JSON 关系型数据库 测试技术
使用Python和Flask构建RESTful API服务
使用Python和Flask构建RESTful API服务
|
2月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
62 3