垃圾分类模型训练部署教程,基于MaixHub和MaixPy-k210(2)

简介: 至此,我们就已经成功上传了其中一个类别的图片啦!按照上面的方式,我们可以继续上传其余每个类别的图片。上传完所有类别的图片后,来到总览,可以大致浏览我们刚刚上传的图片。接下来,就要用这些图片来训练用于垃圾分类的模型了!

垃圾分类模型训练部署教程,基于MaixHub和MaixPy-k210(1):https://developer.aliyun.com/article/1407166

至此,我们就已经成功上传了其中一个类别的图片啦!按照上面的方式,我们可以继续上传其余每个类别的图片。

上传完所有类别的图片后,来到总览,可以大致浏览我们刚刚上传的图片。

接下来,就要用这些图片来训练用于垃圾分类的模型了!

image.png

2、创建训练任务,进行训练

前面我们已经上传好了模型训练所需要的数据,接下来的任务就是用这些数据来训练一个模型。

来到模型训练项目,我们创建一个新项目

image.png

填写项目信息。

  • 名称:随便编个
  • 项目类型:需要与我们创建数据集时的类型保持一致,这里我选择图像分类
  • 项目描述:给自己看的,随便写写。

6dfd381a78b64979a3f092ed19a5993f.png


创建完成后我们就会进入这个项目,选择我们刚刚上传的数据集

461986ede48e4f4ab9dda66ea6ade2d9.png

下一步是训练配置。配置通常很重要,但我们大部分使用默认的就行,深入了解这些配置的意义可能需要学习一些深度学习方面的知识。


随机处理:可以全勾上;增强你的模型抗环境条件干扰的能力。

部署平台:根据你的开发板来选就好,你可以在MaixPy的文档了解到一些板子相关的信息。

如果选择tfjs,你的模型将可以很方便地在手机或电脑的浏览器中运行,体验模型的效果。

数据均衡:如果你上传数据集中,不同类别之间的图片数量差距比较大,就需要开。像我每类都是700张左右,不开也没关系。

039f9299458a4240959e146ead3d4387.png

然后滑到网页最下面,点击创建训练任务

a128283c854b46f183f9aeece73a036f.png

小小地等待一会儿,就可以看到它开始训练啦!

训练可能会花费10来分钟的时间(与训练配置中的迭代次数成正比)。即使你关闭网页,MaixHub的后台仍然会继续帮你完成训练,你可以在训练记录查看你正在训练、或已经训练好的模型。

ada8b2058aea4fbabf1dd743b5a0dadb.png

3、下载训练好的模型

将模型下载到电脑本地,为上板做准备。

训练记录,点击部署

b07964a480404ae2a3a255a9c7c1d119.png

选择手动部署,然后下载模型

3319faf3eddf4ba0ba247cb3191eee9d.png

解压下载得到的压缩包,里面包含如下文件:


main.py:python代码文件,执行它调用模型,MaixHub自动生成。也可以自己写。

*.kmodel:模型文件。

report.json:没什么用,训练过程中的一些记录。

我们需要的是下图中main.py和model-27622.kmodel这两个文件。

57f8b9f6132b4353861005ceeceebe1a.png

垃圾分类模型训练部署教程,基于MaixHub和MaixPy-k210(3):https://developer.aliyun.com/article/1407169?spm=a2c6h.13148508.setting.32.79f64f0ecKMDuK

相关文章
|
25天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
111 1
|
3月前
|
机器学习/深度学习 算法 数据挖掘
从菜鸟到大师:Scikit-learn库实战教程,模型训练、评估、选择一网打尽!
【9月更文挑战第13天】在数据科学与机器学习领域,Scikit-learn是不可或缺的工具。本文通过问答形式,指导初学者从零开始使用Scikit-learn进行模型训练、评估与选择。首先介绍了如何安装库、预处理数据并训练模型;接着展示了如何利用多种评估指标确保模型性能;最后通过GridSearchCV演示了系统化的参数调优方法。通过这些实战技巧,帮助读者逐步成长为熟练的数据科学家。
133 3
|
4月前
|
监控 数据安全/隐私保护 异构计算
借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
【8月更文挑战第8天】借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
104 1
|
4月前
|
机器学习/深度学习 数据采集 人工智能
揭秘大型机器学习模型背后的秘密:如何在技术深度与广度之间找到完美平衡点,探索那些鲜为人知的设计、训练与部署技巧,让你的作品脱颖而出!
【8月更文挑战第21天】大型机器学习模型是人工智能的关键方向,借助不断增强的计算力和海量数据,已实现在学术与产业上的重大突破。本文深入探讨大型模型从设计到部署的全过程,涉及数据预处理、模型架构(如Transformer)、训练技巧及模型压缩技术,旨在面对挑战时提供解决方案,促进AI技术的实用化进程。
85 1
|
4月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习】klearn基础教程
scikit-learn(通常缩写为sklearn)是一个用于Python编程语言的强大机器学习库。它提供了各种分类、回归、聚类算法,以及数据预处理、降维和模型评估的工具。以下是sklearn的基础教程,帮助你开始使用它
29 3
|
4月前
|
机器学习/深度学习 监控 API
基于云计算的机器学习模型部署与优化
【8月更文第17天】随着云计算技术的发展,越来越多的数据科学家和工程师开始使用云平台来部署和优化机器学习模型。本文将介绍如何在主要的云计算平台上部署机器学习模型,并讨论模型优化策略,如模型压缩、超参数调优以及分布式训练。
828 2
|
4月前
|
机器学习/深度学习 JSON API
【Python奇迹】FastAPI框架大显神通:一键部署机器学习模型,让数据预测飞跃至Web舞台,震撼开启智能服务新纪元!
【8月更文挑战第16天】在数据驱动的时代,高效部署机器学习模型至关重要。FastAPI凭借其高性能与灵活性,成为搭建模型API的理想选择。本文详述了从环境准备、模型训练到使用FastAPI部署的全过程。首先,确保安装了Python及相关库(fastapi、uvicorn、scikit-learn)。接着,以线性回归为例,构建了一个预测房价的模型。通过定义FastAPI端点,实现了基于房屋大小预测价格的功能,并介绍了如何运行服务器及测试API。最终,用户可通过HTTP请求获取预测结果,极大地提升了模型的实用性和集成性。
285 1
|
4月前
|
机器学习/深度学习 人工智能 关系型数据库
【机器学习】Qwen2大模型原理、训练及推理部署实战
【机器学习】Qwen2大模型原理、训练及推理部署实战
761 0
【机器学习】Qwen2大模型原理、训练及推理部署实战
下一篇
DataWorks