垃圾分类模型训练部署教程,基于MaixHub和MaixPy-k210(1)

简介: 我的准备Maix duino开发板一块(含摄像头配件)Type-c数据集一根

我的准备

  • Maix duino开发板一块(含摄像头配件)
  • Type-c数据集一根

垃圾的图片数据集

分四类垃圾:厨余垃圾、有害垃圾、可回收垃圾、其它垃圾。每类垃圾分一个文件夹,文件夹中就是该类垃圾的图片。

MaixPy IDE(软件)

编辑用来调用模型的代码

kflash_gui(软件)

将模型文件烧录(下载)到开发板上

数据集:有许多地方可以下载,例如:


中文生活垃圾分类数据集-modelscope

百度飞桨-AIStudio

软件工具:


kflash_gui:下载教程,下载地址-github

MaixPy IDE:MaixPy安装教程

参考文档:


MaixPy参考文档

了解MaixPy建议阅读其中的”入门必看指南“;或者,在你遇到问题时可以在改文档中进行搜索,大部分可以找到。

开始干活

在MaixHub训练模型

首先,让我们在浏览器打开MaixHub的网站:MaixHub,任务分为三步:

  • 上传数据集
  • 创建训练任务,进行训练
  • 下载训练好的模型

1、上传数据集

打开MaixHub网站后,点击模型训练

1ec429e1868348659fc4ad563d4aca92.png

efdb3626fc674a2da6fe8db6169595fb.png

为数据集起个朴素的名字,选择标注类型

  • 分类:判断一张图片的类别。
  • 检测:比分类更进一步,从图片找到特定物体,得到物体的位置(坐标)和类别

这里我们选择的是分类;检测任务的训练数据标注会比较麻烦。

52f4821fa74d4fd9ab778db369956c24.png

然后点击进入我们刚刚创建的数据集,现在它里面还什么都没有

4678b23b752a464eb8f62726996f45da.png

接着添加标签,依次输入添加本次任务中所有的标签。

  • 我这里是把垃圾分成四类,所以标签有food、harmful、other、recyclable,分别代表厨余垃圾、有害垃圾 、其它垃圾、可回收垃圾。

041f642f8d9045f8923269b6563ee059.png

然后点击一个标签,比如food,接着选择图片,以上传类别为food的图片。

ead135b853a347deac71fb4926f199cc.png

选中所有food类别的图片,然后点击打开,就可以批量一次性上传所有该类别的图片。

image.png

图片会要加载小一会儿,加载完成后开始上传

一定要点击“开始上传”!仅仅加载完是没有用的。

2ff37dd851e94cb2969ab51ea4762825.png

垃圾分类模型训练部署教程,基于MaixHub和MaixPy-k210(2):https://developer.aliyun.com/article/1407167?spm=a2c6h.13148508.setting.33.79f64f0ecKMDuK


相关文章
|
5月前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
Cosmos on PAI系列一:PAI-Model Gallery云上一键部署NVIDIA Cosmos Reason-1
本篇文章介绍 Cosmos 最新世界基础模型 Cosmos Reason-1 如何在阿里云人工智能平台 PAI 上进行快速部署使用。
|
4月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
5月前
|
人工智能 运维 API
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
|
4月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
265 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【新模型速递】PAI-Model Gallery云上一键部署MiniMax-M1模型
MiniMax公司6月17日推出4560亿参数大模型M1,采用混合专家架构和闪电注意力机制,支持百万级上下文处理,高效的计算特性使其特别适合需要处理长输入和广泛思考的复杂任务。阿里云PAI-ModelGallery现已接入该模型,提供一键部署、API调用等企业级解决方案,简化AI开发流程。
|
3月前
|
机器学习/深度学习 人工智能 JSON
DistilQwen-ThoughtX 蒸馏模型在 PAI-ModelGallery 的训练、评测、压缩及部署实践
通过 PAI-ModelGallery,可一站式零代码完成 DistilQwen-ThoughtX 系列模型的训练、评测、压缩和部署。
|
6月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B
PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。 现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。
|
7月前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
3486 11
阿里云PAI部署DeepSeek及调用

热门文章

最新文章