Python实现SMOGN算法解决不平衡数据的回归问题

简介: Python实现SMOGN算法解决不平衡数据的回归问题

  本文介绍基于Python语言中的smogn包,读取.csv格式的Excel表格文件,实现SMOGN算法,对机器学习、深度学习回归中,训练数据集不平衡的情况加以解决的具体方法。

  在不平衡回归问题中,样本数量的不均衡性可能导致模型在预测较少类别的样本时表现较差;为了解决这个问题,可以使用SMOTE(Synthetic Minority Over-sampling Technique)算法或SMOGN(Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise)算法来生成合成样本来平衡数据集。

  SMOTE算法的基本思想是通过对少数类样本进行插值,生成一些合成样本,从而增加少数类样本的数量;这些合成样本是通过选取少数类样本和它们的近邻样本之间的差异来生成的。而SMOGN算法则是对SMOTE算法的进一步完善,在生成新样本的同时,还增加了高斯噪声,且在生成新样本(过采样)的同时还可以将原本数量较多的大样本减少(欠采样);因此,SMOGN算法相较SMOTE算法更为合理一些。

  在Python中,我们可以基于现有的第三方库smogn包,来完成SMOGN算法;而SMOTE算法则实现起来较为麻烦一些,还要自己写函数(imblearn.over_sampling.SMOTE虽然可以实现SMOTE算法,但其只适用于分类场景,在回归场景中无法使用);再加上既然SMOGN算法相较SMOTE算法更为合理一些,所以我们这里就只介绍SMOGN算法的Python实现。如果需要在R语言中实现这两种算法,大家参考文章R语言实现SMOTE与SMOGN算法解决不平衡数据的回归问题https://blog.csdn.net/zhebushibiaoshifu/article/details/131688993)即可。

  首先,我们需要配置需要的smogn包。此时,我们需要打开Anaconda Prompt软件;这一软件的具体位置如下图所示。

  由于我希望在一个名称为py38Python虚拟环境中配置、使用smogn包,因此首先通过如下的代码进入这一虚拟环境;关于虚拟环境的创建与进入,大家可以参考文章Anaconda中Python虚拟环境的创建、使用与删除https://blog.csdn.net/zhebushibiaoshifu/article/details/128334614)。

activate py38

  运行上述代码,即可进入指定的虚拟环境中。随后,我们输入如下的代码。

pip install smogn

  接下来,输入y即可开始smogn包的配置工作。再稍等片刻,出现如下图所示的情况,即说明smogn包已经配置完毕。

  接下来,我们通过如下的代码,即可实现对不平衡数据的SMOGN算法操作。

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 11 13:56:36 2023
@author: fkxxgis
"""
import smogn
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv(r"E:\01_Reflectivity\99_Model_Training\00_Data\02_Extract_Data\26_Train_Model_New\Train_Model_0711.csv")
df_nona = df.dropna()
df_smogn = smogn.smoter(
    data = df_nona,
    y = "inf_dif",
    k = 3)
plt.hist(df_nona["inf_dif"], bins = 50)
plt.hist(df_smogn["inf_dif"], bins = 50)

  代码的整体思路也很简单,首先就是读取一下.csv格式的Excel表格文件,随后基于smogn.smoter()函数进行SMOGN算法的实现;其中,上述代码用到了3个参数,第一个参数表示需要加以处理的全部数据,第二个参数则表示我们的因变量,第三个参数是在进行过采样时,判断样本距离所用到的邻域个数。关于这个函数详细的参数介绍,大家可以参考其官方网站;我们这里就不再赘述了。代码最后,就是绘制2个直方图,看看我们的SMOGN算法效果。

  运行上述代码,即可开始SMOGN算法的实现。在运行时,将会看到如下所示的进度条。不过不得不说,在数据量比较大的时候,程序运行真的会很慢很慢。

  如下图所示,我们一共要完成6个进度条,才算完成全部的SMOGN算法。

  接下来,我们可以对比一下直方图。如下图所示,是我们执行SMOGN算法前的因变量直方图。

  下图则是执行SMOGN算法后的因变量直方图。

  可以看到,只能说效果一般,其中数据的少数部分,稍微有些增多;而数据原本的主要部分,甚至也被增多了。当然,这和我们前面smogn.smoter()函数的参数设置是有关的,大家如果希望进一步调整SMOGN算法的效果,可以自行尝试修改smogn.smoter()函数的参数。

  我这里就没有花更多时间对参数加以修改了——因为通过这样的方法完成SMOGN算法的Python实现,实在是太慢了;不如用R语言来实现,速度非常快,且效果也非常好,另外其还可以同时实现SMOGN算法与SMOTE算法。具体在R语言中的实现方法,大家参考文章R语言实现SMOTE与SMOGN算法解决不平衡数据的回归问题https://blog.csdn.net/zhebushibiaoshifu/article/details/131688993)即可。

  至此,大功告成。

欢迎关注:疯狂学习GIS

相关文章
|
4天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
10天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
|
8天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
10天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
10天前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
|
10天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
|
10天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
|
10天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
|
6天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
|
7天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
75 11

推荐镜像

更多