Anaconda配置Python新版本tensorflow库(CPU、GPU通用)的方法

简介: Anaconda配置Python新版本tensorflow库(CPU、GPU通用)的方法

  本文介绍在Anaconda环境中,下载并配置Python中机器学习、深度学习常用的新版tensorflow库的方法。

  在之前的两篇文章基于Python TensorFlow Estimator的深度学习回归与分类代码——DNNRegressorhttps://blog.csdn.net/zhebushibiaoshifu/article/details/114001720)与基于Python TensorFlow Keras的深度学习回归代码——keras.Sequential深度神经网络https://blog.csdn.net/zhebushibiaoshifu/article/details/114016531)中,我们介绍了利用Python中的tensorflow库,实现机器学习深度学习的具体思路与代码实现;然而,当初并没有具体介绍tensorflow库的配置方法。因此,在这篇文章中,我们就介绍一下在Anaconda环境中,配置tensorflow库的详细方法;此外,这里需要注意,在最新的tensorflow库(版本大于1.5)中,已经同时支持CPUGPU训练,不需要再区分是配置CPU版本的库还是GPU版本的库了。

  首先,和Anaconda环境配置其他库一样,我们需要打开Anaconda Prompt软件;如下图所示。

  随后,将会弹出如下所示的终端窗口。

  接下来,我们即可开始tensorflow库的配置。由于我这里希望将tensorflow库配置到另一个已有的Anaconda虚拟环境中(这个虚拟环境的名称为py36tfPython版本是3.6的),而不是当前这个默认的base环境,因此需要按照文章Anaconda中Python虚拟环境的创建、使用与删除https://blog.csdn.net/zhebushibiaoshifu/article/details/128334614)中提到的方法,首先进入这个名称为py36tf的虚拟环境中,如下图所示。

  如果大家需要在默认的环境中配置tensorflow库,直接执行接下来的操作即可;如果大家希望新建一个环境来配置tensorflow库,那么参考上文提及的文章Anaconda中Python虚拟环境的创建、使用与删除https://blog.csdn.net/zhebushibiaoshifu/article/details/128334614),创建并进入一个新的虚拟环境,再继续执行接下来的操作即可。

  接下来,继续输入如下的代码,即可立即开始配置tensorflow库。

pip install --upgrade tensorflow

  运行上述代码后,可以看到将立即开始tensorflow库的配置,如下图所示。其中,由于我这里Python版本是3.6的,而不是最新的Python版本,因此从下图可以看到tensorflow库版本也并不是最新的,而是2.6.2版本的——当然对我而言,这也就足够了。如果大家希望用最新版本的tensorflow库,需要注意同时使用最新的Python版本。

  此外,这里有必要提一句——如果我用如下所示的代码进行tensorflow库的配置,配置得到的tensorflow库则是1.X版本的,而不是上面我们刚刚得到的是2.X版本,始终无法获取最新版本的tensorflow库;且之后无论怎么更新tensorflow库,都会出现报错信息。

conda install tensorflow

  例如,在我的电脑上,如果运行上述代码,则结果如下图所示。

  不知道具体是哪里的问题,从上图可以看到这种方法得到的tensorflow库始终是1.X版本(例如上图中显示tensorflow库就是1.2.1版本的)。所以,如果大家需要比较新版本的tensorflow库,还是建议用前面提到的pip install --upgrade tensorflow这句代码来实现。

  让我们继续回到前述tensorflow库配置的工作中;稍等片刻,一般情况下即可完成tensorflow库的配置。这里需要注意,如果此时大家出现如下图所示的报错,则说明tensorflow库暂时还是没有配置成功。

  这种情况是由于pip版本不够高导致的,因此我们需要通过如下所示的代码将pip升级。

python -m pip install --upgrade pip

  输入上述代码,如下图所示。

  运行这一代码后,我们重新运行一次pip install --upgrade tensorflow这句代码即可。可是在我这里,重新运行这句代码后,又出现了如下图所示的问题。

  通过检查,发现网络代理的问题;将代理关闭后,即可解决问题(但是很奇怪,不知道为什么刚刚没有报这个错误,重新运行这句代码后才出现这样的错误)。最终,得到结果界面如下图所示。

  接下来,我们可以输入如下的代码,从而检查tensorflow库是否已经配置成功。

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

  如下图所示,如果最终得到了一个tf.Tensor结果,即可说明我们的tensorflow库终于配置完毕了。

  至此,大功告成。当然,到这里或许也不算完全成功——从上图可以看到,当前tensorflow库并没有进行GPU计算。如果大家的电脑上没有GPU,或者不需要用GPU加以计算,那就不用管这个问题,相当于已经完全成功了,后续直接开始用tensorflow库进行各类深度学习的应用即可;但是对于电脑上有GPU,并且也希望让GPU加入计算的用户而言,则按照文章新版本GPU加速的tensorflow库的配置方法https://fkxxgis.blog.csdn.net/article/details/129291170)中所述的方法加以配置即可。

欢迎关注:疯狂学习GIS

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
24天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
241 55
|
27天前
|
Ubuntu Shell Linux
pyenv 管理多个 Python 版本(1)
pyenv 管理多个 Python 版本(1)
159 86
pyenv 管理多个 Python 版本(1)
|
22天前
|
Shell Python
使用 pyenv 来管理多个 Python 版本(2)
使用 pyenv 来管理多个 Python 版本(2)
111 71
使用 pyenv 来管理多个 Python 版本(2)
|
3月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
388 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
3月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。
51 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
168 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
3月前
|
监控 并行计算 数据处理
构建高效Python应用:并发与异步编程的实战秘籍,IO与CPU密集型任务一网打尽!
在Python编程的征途中,面对日益增长的性能需求,如何构建高效的应用成为了每位开发者必须面对的课题。并发与异步编程作为提升程序性能的两大法宝,在处理IO密集型与CPU密集型任务时展现出了巨大的潜力。今天,我们将深入探讨这些技术的最佳实践,助你打造高效Python应用。
50 0
|
1月前
|
开发框架 .NET PHP
网站应用项目如何选择阿里云服务器实例规格+内存+CPU+带宽+操作系统等配置
对于使用阿里云服务器的搭建网站的用户来说,面对众多可选的实例规格和配置选项,我们应该如何做出最佳选择,以最大化业务效益并控制成本,成为大家比较关注的问题,如果实例、内存、CPU、带宽等配置选择不合适,可能会影响到自己业务在云服务器上的计算性能及后期运营状况,本文将详细解析企业在搭建网站应用项目时选购阿里云服务器应考虑的一些因素,以供参考。
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
97 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
110 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
下一篇
开通oss服务