基于MIMO+16QAM系统的VBLAST译码算法matlab仿真

简介: 基于MIMO+16QAM系统的VBLAST译码算法matlab仿真

1.算法运行效果图预览

d8266cf55de472e2f93bad2eb5f3c292_82780907_202312251504410689332362_Expires=1703488481&Signature=EhhbuwMxp91IW4fd4Va2i9y50uw%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于MIMO+16QAM系统的VBLAST(Vertical Bell Laboratories Layered Space-Time)译码算法是一种用于提高无线通信系统性能的技术。

   MIMO(多输入多输出)技术利用多个天线来提高无线通信系统的性能,通过增加天线数量和多样性,可以增加信道容量和传输效率。16QAM(16阶正交幅度调制)是一种调制技术,通过将信号调制为多个幅度和相位的组合,可以提高信号的传输效率。

  VBLAST译码算法是一种基于分层空时码的技术,通过将多个天线接收到的信号进行分层处理,可以有效地提高信号的抗干扰能力和可靠性。具体而言,VBLAST算法利用多个天线的空间分集优势,将接收到的信号进行分层解码,从而提高了信号的解码性能和传输效率。

   基于MIMO+16QAM系统的VBLAST译码算法的数学模型可以表示为:

   y = Hx + n

其中,y表示接收端接收到的信号,H表示信道矩阵,x表示发送端发送的信号,n表示噪声。

VBLAST算法的核心思想是将接收到的信号进行分层解码,具体步骤如下:

对接收到的信号y进行预处理,例如信道估计、噪声抑制等。
对预处理后的信号进行分层,将每个天线的接收信号分为多个层次。
对每个层次的信号进行解码,得到相应的发送信号。
将解码后的信号进行合并,得到最终的发送信号。
VBLAST算法,通过如下步骤实现,MMSE接收器抑制了干扰和噪声成分,但是ZF接收器仅仅排除了干扰的成分。这暗示了在发射符号和接收器估计的均方误差达到最小值。因此,MMSE在噪声存在的情况下性能要优于ZF接收器。其运算法则如下所示:

初始值设定

239368b7a82977655a7473c5427717af_82780907_202312251504510657254233_Expires=1703488491&Signature=fboU%2FCbUHmsd%2Fd61m%2FlLNiBt1v0%3D&domain=8.png

递归式
03493bf2d138344762d847d1c39bf16d_82780907_202312251505000032920577_Expires=1703488500&Signature=Y%2F3ZuAze2GvpaJRo6WXUY4ZjWLc%3D&domain=8.png

4.部分核心程序

```for SNR_dB=SNR
SNR_dB
ind = ind + 1;
bertmp = 0;
NUMS = 0;
while bertmp <= 100
..........................................................................
%通过信道
H=zeros(R_num,T_num);% 初始化信道矩阵
for rx = 1:R_num% 为每个信道生成随机复高斯系数
for tx = 1:T_num
x = randn(1);
y = randn(1);
alpha = sqrt(x^2+y^2);
theta = 2pirand(1);
H(rx,tx) = alphaexp(jtheta);
end
end
%通过MIMO信道
Channel_Out = H*modu_output;% 通过MIMO信道,输出通道输出信号
module_signal = [];
for t=1:T_num
module_signal =[module_signal abs(Channel_Out(t,:))];
end
%AWGN nosie% 加白高斯噪声,进行AWGN噪声处理,得到解码后的信号Decoder1
Decoder1 = awgn(Channel_Out,SNR_dB,'measured');

      r        = Decoder1;% 解码后的信号r,初始化解码后的信号向量r为Decoder1,长度为T_num*Frames*index  
      y        = zeros(T_num,Frames);
      % 计算信道H的伪逆,得到G,G是发送端到接收端的权值矩阵的转置的逆矩阵,用于MMSE均衡处理  
      G        = pinv(H);
      % 计算G中每列元素的平方和的最小值对应的索引k0,以及对应的列向量gk,用于MMSE均衡处理中的权重调整。
      % 其中'min'函数返回的是每列元素的平方和的最小值,'sum'函数用于计算列元素的平方和。'pinv'函数用于计算矩阵的伪逆。
      % 'min'函数返回的是每列元素的平方和的最小值对应的索引k0,以及对应的列向量gk。

      [gk,k0]  = min(sum(abs(G).^2,2));

      for m = 1:T_num    
          k1(m)      = k0;
          w(m,:)     = G(k1(m),:);
          y          = w(m,:)*r;
          a(k1(m),:) = Q(y);
          r          = r - H(:, k1(m))*a(k1(m),:);   
          for t=1:m
             G(k1(t),:)=inf;
          end
          [gk,k0] = min(sum(abs(G).^2,2));
      end

      %16QAM% 初始化解调输出向量

..........................................................
end
BER(ind) = bertmp/NUMS/length(Signals);
end

figure;
semilogy(SNR,BER,'b-o');
grid on;
xlabel('SNR(db)');
ylabel('BER');

save R1.mat SNR BER

```

相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
102 80
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
26 16
|
20小时前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
18 5
|
18小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章