数据可视化系列-05数据分析报告

简介: 数据可视化系列-05数据分析报告

数据可视化系列-05数据分析报告


参考:重磅 | 中国反贿赂合规调查报告


1、了解初识数据分析报告

参考:分析数据分析报告撰写的6大原则,干货篇!


数据分析报告简介

数据分析报告是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。

一份好的数据分析报告,首先要有好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然;其次需要有明确的结论;最后需要有建议或解决方案。


数据分析报告的作用

数据分析报告主要包括三个方面:展示分析结果、验证分析质量和为决策者提供参考依据这三个方面的作用。


报告的能力体现

参考:数据分析能力如何体现?

基本的理论知识:数理统计、模型原理、市场研究等。

常规分析工具的使用。常用办公软件(Excel、PPT、思维导图)、数据库、统计分析工具、数据挖掘等。

一定的业务理解能力,能理解业务背后的商业逻辑。只有理解问题,才能转换成数据分析的问题,才知道如何设定分析目标进行分析。

数据报告和数据可视化的能力。数据分析得再好,如果不能以漂亮的方式“表达”,成效也会大打折扣。


报告编写的原则

原则一:寻找准确的数据源和数据描述

数据质量是决定数据分析报告质量的前提。数据分析的结果和生成的报告只有在数据质量得到保证后才具有指导意义。并在相应的数据源中,找到数据特征并进行描述。


原则二:明确数据分析报告的框架

明确数据分析报告的框架也是非常必要的。数据分析报告一般包括三个部分:结论总结、报告背景和分析目的描述、数据收集和数据特征描述、分析和讨论。


原则三:数据结合个人分析业务逻辑

数据分析报告不是做数学或统计计算,整个数据分析过程必须结合分析师个人对业务逻辑的主观理解,否则数据分析也脱离现实,没有实用价值。


原则四:结论有来源,分析有结论

要保证整个分析过程的严谨性,做到每一个结论都有痕迹可循,有证据可循,分析与结论环环相扣,从根本上保证报告的逻辑性和科学性。每一部分的分析都能对应有价值的结论,从而保证报告整体节奏的紧凑性和效率的提高。


原则五:结论要有深度。

写结论时,表面数据结果不能作为结论。我们必须结合我们对业务的理解,交叉分析不同类别的数据,如比较成本的增加与供应商变化的关系等,以发现问题和诱因,并给出解决方案和建议,这是一个真正深刻的结论。


原则六:善用数据可视化

俗话说“字不如表,表不如图”。单靠文字支持的数据分析报告很无聊,报告让读者也会很累。以图形和图表的形式显示数据分析的结果,方便读者观察和理解数据的内在趋势和规律。


报告种类

构建数据分析报告的具体目标应可以描述为以下3个方面:

1、进行总体分析。。

2、确定项目重点,合理配置项目资源。

3、总结经验,建立模型。

以上3个具体目标的联系是紧密的,不是孤立的,只有在进行总体分析的基础上,才能进一步的确定项目重点,并在对重点内容的分析中得出结果,进而实现评价的过程。如果单单实现其中一个目标,最终得出的报告将是不完整的,对制订项目实施方案也没有可靠的支撑作用。


2、掌握数据分析报告结构

参考:重磅 | 中国反贿赂合规调查报告


标题页

目录

前言

正文

结论与建议

附录

3、了解报告的描述规范

参考:数据报告的注意事项


报告注意事项

一、明确报告的受众

不同的受众,对于报告的期望是完全不一样的。

高层关注策略和大的趋势,高层关注的是大环境,竞品等,基于数据分析或者数据洞察发现机会与洞察点。

中层关注策略,基于数据可以制定的策略,用户群体是怎样的用户群体,用户特征,用户流失等。

员工关注执行与细节。某一活动的细节等。


二、规范数据的格式

1、数据源需明确标出,是外部还是内部,是内部的哪个系统。

2、指标含义的明确解释,如果是复合型指标,需要说明指标的计算过程。

3、确保数据质量如果是从日志获取的数据,需要反复确认数据的查询逻辑和处理逻辑,必要的情况下,可采取方法验证。


三、有框架,可视化

1.需要先写数据分析目录或概要,列明主要观点。可参考书籍《金字塔原理》

2. 图表可视化,叙述事件也尽可能采用结构化的方式,采用统一的标准叙述,多使用图表展示数据。

3. 重要数据,异常数据需要特别标注与说明。


报告表达的维度

参考:数据分析师八大能力之八:总结汇报的能力


数据结论可用指标

参考:这些实用的数据分析指标你了解吗?

参考:做数据分析常用的数据指标都有哪些

数据分析所用的方法可分为描述统计方法和推断统计方法。描述统计研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。推断统计是研究如何利用样本数据来推断总体特征的统计方法。


描述性统计指标

bd16f167d3104d02be8a71577ba2b69f.png

5d1c046058240fa251a409acdcb11b66.jpg

相关文章
|
2月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
50 1
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
48 2
|
2月前
|
数据可视化 数据挖掘 Python
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
43 4
|
2月前
|
数据可视化 数据挖掘 Python
告别枯燥数字,拥抱视觉盛宴!Python 数据分析中的数据可视化艺术,你 get 了吗?
在数据驱动时代,数据分析至关重要,但单纯依赖数据表格难以揭示其背后的洞见。这时,数据可视化便彰显出其重要性,尤其借助 Python 的强大工具如 Matplotlib、Seaborn 和 Plotly 等,可将数据转化为直观的图形。Matplotlib 提供高度定制的图表,Seaborn 则简化了图表美化过程。通过折线图、散点图、箱线图、小提琴图及热力图等多种图表形式,我们可以更深入地理解数据分布与关系,有效传达信息并支持决策制定。数据可视化不仅是一门技术,更是讲述数据故事的艺术。
67 3
|
3月前
|
数据可视化 数据挖掘 Python
Python中的数据可视化:探索性数据分析的利器
【8月更文挑战第29天】在数据科学的世界里,数据可视化是理解复杂数据集的关键。本文将引导你通过Python的强大库,如Matplotlib和Seaborn,来揭示数据背后的故事。我们将一起探索如何利用这些工具进行有效的数据可视化,从而促进对数据的深入理解和分析。文章不仅提供代码示例,还将讨论如何选择恰当的图表类型、调整视觉元素以及如何解释图表结果,旨在帮助初学者建立坚实的数据可视化基础。
|
3月前
|
数据可视化 数据挖掘 API
Python数据分析:数据可视化(Matplotlib、Seaborn)
数据可视化是数据分析中不可或缺的一部分,通过将数据以图形的方式展示出来,可以更直观地理解数据的分布和趋势。在Python中,Matplotlib和Seaborn是两个非常流行和强大的数据可视化库。本文将详细介绍这两个库的使用方法,并附上一个综合详细的例子。
|
4月前
|
数据可视化 数据挖掘 Python
告别枯燥数字,拥抱视觉盛宴!Python 数据分析中的数据可视化艺术,你 get 了吗?
【7月更文挑战第23天】在数据驱动时代,Python的Matplotlib、Seaborn与Plotly等库使数据可视化成为洞察信息的关键工具。不仅转化数字为图形,更是视觉传达故事。示例代码展示从基础图表到箱线图、小提琴图和热力图的创建过程,强调选择合适图表、简洁设计与色彩的重要性。Python赋能数据可视化,开启数据理解新视角,助于揭示模式、辅助决策。✨📊💡 (总计239字符)
60 7
|
4月前
|
数据可视化 数据挖掘 Python
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
【7月更文挑战第24天】在数据驱动时代,分析师穿梭数字海洋揭示故事,数据可视化如魔法棒般将复杂数据转化成直观图形。Matplotlib与Seaborn成为黄金搭档:前者作为基础绘图库提供高度定制化选项;后者在其上构建,简化复杂图表绘制并增强美观度。两者结合,助力分析师高效完成任务。
35 6
|
3月前
|
数据可视化 数据挖掘 Python
数据可视化不再难!Matplotlib带你轻松绘制精美图表,让数据分析焕发光彩!
【8月更文挑战第22天】今天分享如何用Python的Matplotlib库绘制多样图表。Matplotlib是数据可视化的强大工具,对数据分析至关重要。本文分六部分:首先介绍环境准备,包括安装和配置;随后通过四个案例演示折线图、柱状图、饼图及散点图的绘制方法;最后总结并鼓励大家进一步探索Matplotlib的丰富功能。跟着示例操作,你将学会基本图表的制作,提升数据展示技能。
41 0
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
从菜鸟到高手,一图胜千言!Python数据分析与机器学习中的数据可视化实战秘籍!
【7月更文挑战第24天】在数据科学中,数据可视化是探索与沟通的关键。从Matplotlib的基础绘图到Seaborn的统计图形,再到Plotly的交互式图表,这些工具助你成为数据叙事大师。示例代码涵盖正弦波图、小费散点图及鸢尾花分布图,展现从简单到复杂的可视化之旅。掌握这些技巧,你就能更有效地解析和呈现数据故事。
57 4