Python启发式算法中爬山法的讲解及解方程问题实战(超详细 附源码)

简介: Python启发式算法中爬山法的讲解及解方程问题实战(超详细 附源码)

一、启发式算法

还有一类重要的迭代法,它的迭代关系式不依赖问题的数学性能,而是受某种自然现象的启发而得到,称为启发式算法(Heuristic Algorithm),如爬山法、遗传算法、模拟退火算法、蚁群算法等。

启发式算法是一种根据经验,以近似随机的试探来搜索空间的方法,它可以在可接受的计算成本内得到最好解,但不保证能得到最优解。

爬山法

爬山法的思路很简单,它是从起点开始,对周边邻近点进行试探,如果有更好的解,则从该点开始进行新一轮的试探,直到没有更好的解为至。

爬山法好像人在黑夜里爬山,无法看到周边的情况,但可以通过棍子来试探周边上升的位置,然后到该位置再一次试探周边的位置。

爬山法可能跑到所谓的局部最优点,形象地说,就是可以爬到山峰,但不一定是最高的那座山峰。

下面介绍用爬山法来寻找上述方程的解。随机设置初始点,通过多轮迭代,程序能够搜索到接近方程的解的值,求解的精度和迭代的次数和初始点有关

大概迭代到500多次收敛

代码如下

import random
# 搜索步长
delta = 0.001
# 通过代入0和1,可估计出解在0和1之间
BOUND = [0, 1]
def f(x):
    return x**3 + (math.e**x)/2.0 + 5.0*x - 6
def hillClimbing(x, f):
    times = 0
    print(str(times)+":"+str(x))
    while abs( f(x+delta) ) < abs(f(x)) and x+delta <= BOUND[1] and x+delta >= BOUND[0]:
        x = x + delta
        times += 1
        print(str(times)+":"+str(x))
    while abs( f(x-delta) ) < abs(f(x)) and x-delta <= BOUND[1] and x-delta >= BOUND[0]:
        x = x - delta
        times += 1
        print(str(times)+":"+str(x))
    return x
x = random.random() * ( BOUND[1]-BOUND[0] ) + BOUND[0]
x_value = hillClimbing(x, f)

下面将迭代过程可视化

代码如下

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 1, 100)
y = f(x)
plt.plot(x, y, color="red", linewidth=1)
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
23天前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
44 0
|
27天前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
51 4
|
20天前
|
Python
【10月更文挑战第10天】「Mac上学Python 20」小学奥数篇6 - 一元一次方程求解
本篇将通过 Python 和 Cangjie 双语讲解如何求解一元一次方程。通过这道题,学生将掌握如何用编程实现方程求解,并体验基本的代数计算。
91 1
|
27天前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
56 6
|
24天前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
45 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
5天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
10 3
|
8天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
23 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
13天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
20天前
|
Python
【10月更文挑战第11天】「Mac上学Python 21」小学奥数篇7 - 二元一次方程组求解
本篇将通过 Python 和 Cangjie 双语讲解如何求解二元一次方程组。通过这道题,学生将学会如何使用代数方法和编程逻辑求解方程组中的未知数。
64 1
|
21天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
44 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练