【Python自然语言处理】隐马尔可夫模型中维特比(Viterbi)算法解决商务选择问题实战(附源码 超详细必看)

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 【Python自然语言处理】隐马尔可夫模型中维特比(Viterbi)算法解决商务选择问题实战(附源码 超详细必看)

需要源码请点赞关注收藏后评论区留言私信~~~

一、统计分词

统计分词基本逻辑是把每个词语看做由单字组成,利用统计学原理计算连接字在不同文本中出现的次数,以此判断相连字属于特定词语的概率。

二、隐马尔可夫模型

当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态,那么此随机过程通常称之为马尔可夫过程。隐马尔可夫模型(Hidden Markov Model:HMM)是含有隐含且未知参数的马尔可夫过程。

下图表示了隐马尔可夫模型隐藏变量和观测变量相互之间的依赖关系,在任意时刻,观测变量仅仅依赖于隐藏变量,与其他隐藏状态变量和观测变量的取值没有直接关联,同时,特定时刻隐藏状态仅依赖于紧邻上一时刻隐藏状态,与其他状态无关

三、商务问题描述

假定某公司销售竞赛指导委员会从n个部门选取员工参加销售业务竞赛,每个部门有m类不同销售能力的员工组成,初始状态下随机选择一个部门后再随机挑选一名职工,职工的类型可以观测,但职工所在的部门为未知信息,第一名员工选择完后,继续按照随机概率选择下一个部门和下一名员工,依次循环知道选择的员工数量满足竞赛人员挑选要求为止

在这个实例中,隐马尔可夫模型可以表示为

1:部门状态信息 n

2:员工的销售能力状态 m

3:从一个部门迁移到另一个部门的转移概率

4:从特定部门选择特定类型的员工概率

5:初始概率分布

隐马尔可夫模型重点解决的问题包括

1:如何确定观测序列的生成概率

2:观测序列已知的前提下 如何优化参数并最大化观测序列的生成概率

3:如何优化隐藏状态序列 从而实现输出期望值观测序列

四、维特比算法

维特比算法主要用于解决优化隐藏状态序列从而实现输出和期望值观测序列的问题

维特比算法的基本逻辑:

(1)如果最短(或概率最大)路径P经过特定节点G,那么从这条路径起点S到节点G的子路径M,是起点S到节点G之间的最短路径。

(2)从起点S到终点E路径必定经过i时刻的某个状态,如果记录起点S到该状态所有节点的最短路径集合,整体最短路径必经过集合中的某一条。

(3)假定从状态i到状态i+1,起点S到状态i各节点的最短路径已知,计算S到i+1状态的节点的最短路径可以分解为从S到i状态的最短路径,以及从i状态节点到i+1状态节点的最短路径。

下面是利用维特比算法解决上面的商务问题的结果

由结果可知 最优化的部门选择序列应该是先从第二个部门开始,其次是第一个部门,最后是第三个部门(索引从0开始)

五、代码

部分代码如下 需要全部代码请点赞关注收藏后评论区留言私信~~

import numpy as np
#维特比算法
def viterbi_algorithm(H, B, rho, O):
  #隐马尔科夫模型隐藏状态数 N=3,总共有三个班级,分别用0,1,2表示
    N = np.shape(H)[0] 
    #观测序列时间序列
    T = np.shape(O)[0]
    #特定时刻隐藏状态对应最优状态序列概率 
    mu = np.zeros((T,N))
    #特定时刻隐藏状态对应最优状态前导序列概率 
    index = np.zeros((T,N))
    for t in range(T):
        if 0 == t:
            mu[t] = np.multiply(rho.reshape((1, N)), np.array(B[:,O[t]]).reshape((1, N)))
            continue
        for i in range(N):
            temp = np.multiply(np.multiply(mu[t-1], H[:,i]), B[i, O[t]])
            mu[t,i] = max(temp)
            index[t][i] = np.argmax(temp)
    hs = np.zeros((T,))
    t_range = -1 * np.array(sorted(-1*np.arange(T)))
    for t in t_range:
        if T-1 == t:
            hs[t] = np.argmax(mu[t])
        else:
            hs[t] = index[t+1, int(hs[t+1])]
    print('最优隐藏状态序列为:', hs)
    return hs
def Viterbi_init():
    #H是隐藏状态转移概率分布
 )
    #初始状态概率分布
    rho = np.array([[0.2],
                    [0.4],
                    [0.4]])
    #学生的计算机水平观测序列:0-低水平,1-高水平
    O = np.array([[1],
                  [1],
                  [0]]) 
    viterbi_algorithm(H,B,rho,O)
if __name__=='__main__':
    Viterbi_init()

创作不易 觉得有帮助请点赞关注收藏~~~

 

相关文章
|
29天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
24天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
29天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
48 10
|
2月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
Linux C语言 开发者
源码安装Python学会有用还能装逼 | 解决各种坑
相信朋友们都看过这个零基础学习Python的开篇了
467 0
源码安装Python学会有用还能装逼 | 解决各种坑
|
30天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
18天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
102 80
|
2月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
151 59

热门文章

最新文章