PyTorch 的 10 条内部用法

简介: PyTorch 的 10 条内部用法

欢迎阅读这份有关 PyTorch 原理的简明指南。无论您是初学者还是有一定经验,了解这些原则都可以让您的旅程更加顺利。让我们开始吧!

1. 张量:构建模块

PyTorch 中的张量是多维数组。它们与 NumPy 的 ndarray 类似,但可以在 GPU 上运行。

import torch

# Create a 2x3 tensor
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(tensor)

2. 动态计算图

PyTorch 使用动态计算图,这意味着该图是在执行操作时即时构建的。这为在运行时修改图形提供了灵活性。

# Define two tensors
a = torch.tensor([2.], requires_grad=True)
b = torch.tensor([3.], requires_grad=True)

# Compute result
c = a * b
c.backward()

# Gradients
print(a.grad)  # Gradient w.r.t a

3.GPU加速

PyTorch 允许在 CPU 和 GPU 之间轻松切换。利用 .to(device) 获得最佳性能。

device = "cuda" if torch.cuda.is_available() else "cpu"
tensor = tensor.to(device)

4. Autograd:自动微分

PyTorch 的 autograd 为张量上的所有操作提供自动微分。设置 require_grad=True 来跟踪计算。

x = torch.tensor([2.], requires_grad=True)
y = x**2
y.backward()
print(x.grad)  # Gradient of y w.r.t x

5. 带有 nn.Module 的模块化神经网络

PyTorch 提供 nn.Module 类来定义神经网络架构。通过子类化创建自定义层。

import torch.nn as nn

class SimpleNN(nn.Module):

    def __init__(self):
        super().__init__()
        self.fc = nn.Linear(1, 1)

    def forward(self, x):
        return self.fc(x)

6. 预定义层和损失函数

PyTorch 在 nn 模块中提供了各种预定义层、损失函数和优化算法。

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

7. 数据集和DataLoader

为了高效的数据处理和批处理,PyTorch 提供了 Dataset 和 DataLoader 类。

from torch.utils.data import Dataset, DataLoader

class CustomDataset(Dataset):
    # ... (methods to define)

data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

8.模型训练循环

通常,PyTorch 中的训练遵循以下模式:前向传递、计算损失、后向传递和参数更新。

for epoch in range(epochs):
    for data, target in data_loader:
        optimizer.zero_grad()
        output = model(data)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()

9. 模型序列化

使用 torch.save() 和 torch.load() 保存和加载模型。

# Save
torch.save(model.state_dict(), 'model_weights.pth')

# Load
model.load_state_dict(torch.load('model_weights.pth'))

10. Eager Execution and JIT

虽然 PyTorch 默认情况下以 eager 模式运行,但它为生产就绪模型提供即时 (JIT) 编译。

scripted_model = torch.jit.script(model)
scripted_model.save("model_jit.pt")
相关文章
|
6月前
|
数据采集 PyTorch 算法框架/工具
PyTorch基础之数据模块Dataset、DataLoader用法详解(附源码)
PyTorch基础之数据模块Dataset、DataLoader用法详解(附源码)
982 0
|
PyTorch 算法框架/工具
PyTorch中 nn.Conv2d与nn.ConvTranspose2d函数的用法
PyTorch中 nn.Conv2d与nn.ConvTranspose2d函数的用法
496 2
PyTorch中 nn.Conv2d与nn.ConvTranspose2d函数的用法
|
PyTorch 算法框架/工具
关于Pytorch中torch.manual_seed()用法
关于Pytorch中torch.manual_seed()用法
|
18天前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
78 2
|
20天前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
43 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
22天前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
37 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
95 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
36 3
PyTorch 模型调试与故障排除指南
|
25天前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法