☆打卡算法☆LeetCode 153. 寻找旋转排序数组中的最小值 算法解析

本文涉及的产品
云解析DNS,个人版 1个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: ☆打卡算法☆LeetCode 153. 寻找旋转排序数组中的最小值 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一个数组,按照升序排列,经过1-n次旋转后,得到输入数组,找出数组中最小元素。”

2、题目描述

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:
输入: nums = [3,4,5,1,2]
输出: 1
解释: 原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:
输入: nums = [4,5,6,7,0,1,2]
输出: 0
解释: 原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。

二、解题

1、思路分析

这道题是要找出升序排序的数组经过翻转后的最小元素。

一看这道题,嚯,这么简单,直接一波循环找到,管你翻转不翻转呢,结果要求时间复杂度O(log n),那就不能循环遍历了。

对于时间复杂度要求O(log n)的可以试着使用二分查找来解决,时间复杂度O(log n),空间复杂度O(1)。

也就是找到一个中位数,中位数的一边是有序的,将有序数组的最小值与当前保存的最小值比较,继续二分遍历找中位数,直到左指针大于右指针。

2、代码实现

代码参考:

class Solution {
    public int findMin(int[] nums) {
        int low = 0;
        int high = nums.length - 1;
        while (low < high) {
            int pivot = low + (high - low) / 2;
            if (nums[pivot] < nums[high]) {
                high = pivot;
            } else {
                low = pivot + 1;
            }
        }
        return nums[low];
    }
}

1702362515549.jpg

3、时间复杂度

时间复杂度:O(log n)

其中n是数组的长度,在二分查找的过程中,每一步会忽略一半的区间,所以时间复杂度为O(log n)。

空间复杂度:O(1)

只需要常量级的空间储存变量。

三、总结

由于数组中不包含重复元素,并且当前的区间长度不为1,那么pivot和higt就不会重合。

如果当前区间长度为1,说明可以使用二分查找,不会存在nums[pivot]=nums[high]的情况。

当二分查找结束时,就得到了最小值所在的位置。

相关文章
|
22天前
|
算法
LeetCode第81题搜索旋转排序数组 II
文章讲解了LeetCode第81题"搜索旋转排序数组 II"的解法,通过二分查找算法并加入去重逻辑来解决在旋转且含有重复元素的数组中搜索特定值的问题。
LeetCode第81题搜索旋转排序数组 II
|
5天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
64 1
|
13天前
|
算法 JavaScript 前端开发
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
74 1
|
13天前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
41 1
|
18天前
|
算法 搜索推荐 Java
算法实战:手写归并排序,让复杂排序变简单!
归并排序是一种基于“分治法”的经典算法,通过递归分割和合并数组,实现O(n log n)的高效排序。本文将通过Java手写代码,详细讲解归并排序的原理及实现,帮助你快速掌握这一实用算法。
34 0
|
21天前
|
机器学习/深度学习 算法 TensorFlow
【深度学习】深度学习语音识别算法的详细解析
深度学习语音识别算法是一种基于人工神经网络的语音识别技术,其核心在于利用深度神经网络(Deep Neural Network,DNN)自动从语音信号中学习有意义的特征,并生成高效的语音识别模型。以下是对深度学习语音识别算法的详细解析
41 5
|
18天前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
32 1
|
20天前
|
机器学习/深度学习 自然语言处理 负载均衡
揭秘混合专家(MoE)模型的神秘面纱:算法、系统和应用三大视角全面解析,带你领略深度学习领域的前沿技术!
【8月更文挑战第19天】在深度学习领域,混合专家(Mixture of Experts, MoE)模型通过整合多个小型专家网络的输出以实现高性能。从算法视角,MoE利用门控网络分配输入至专家网络,并通过组合机制集成输出。系统视角下,MoE需考虑并行化、通信开销及负载均衡等优化策略。在应用层面,MoE已成功应用于Google的BERT模型、Facebook的推荐系统及Microsoft的语音识别系统等多个场景。这是一种强有力的工具,能够解决复杂问题并提升效率。
34 2
|
22天前
|
存储 算法 Java
深入算法基础二分查找数组
文章深入学习了二分查找算法的基础,通过实战例子详细解释了算法的逻辑流程,强调了确定合法搜索边界的重要性,并提供了Java语言的代码实现。
深入算法基础二分查找数组
|
14天前
|
算法
【Azure Developer】完成算法第4版书中,第一节基础编码中的数组函数 histogrm()
【Azure Developer】完成算法第4版书中,第一节基础编码中的数组函数 histogrm()

热门文章

最新文章

推荐镜像

更多
下一篇
DDNS