☆打卡算法☆LeetCode 142. 环形链表 II 算法解析

简介: ☆打卡算法☆LeetCode 142. 环形链表 II 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一个链表的头节点,判断链表中是否有环。”

2、题目描述

给定一个链表的头节点  head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

1702360822030.jpg

示例 1:
输入: head = [3,2,0,-4], pos = 1
输出: 返回索引为 1 的链表节点
解释: 链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入: head = [1,2], pos = 0
输出: 返回索引为 0 的链表节点
解释: 链表中有一个环,其尾部连接到第一个节点。

二、解题

1、思路分析

这道题跟141题环形链表类似,解法也类似,也是可以使用哈希表来解题。

遍历所有节点,每到达一个节点,就判断该节点是否存在于哈希表中,存在说明是环形链表,不存在就将该节点加入到哈希表中,直到遍历结束。

在上一篇文章中我提到可以使用双指针,那么这道题就用双指针来解吧。

使用双指针,用快慢指针,快指针每次走两步,慢指针每次走一步。

当快指针追上慢指针则表示有环。

如果快指针指向null,这说明链表没环。

2、代码实现

代码参考:

public class Solution {
    public ListNode detectCycle(ListNode head) {
        if (head == null) {
            return null;
        }
        ListNode slow = head, fast = head;
        while (fast != null) {
            slow = slow.next;
            if (fast.next != null) {
                fast = fast.next.next;
            } else {
                return null;
            }
            if (fast == slow) {
                ListNode ptr = head;
                while (ptr != slow) {
                    ptr = ptr.next;
                    slow = slow.next;
                }
                return ptr;
            }
        }
        return null;
    }
}

1702360852528.jpg

3、时间复杂度

时间复杂度:O(N)

其中N是链表中的节点数。

空间复杂度:O(1)

只是用了几个指针变量。

三、总结

总结一下为何慢指针第一圈走不完一定会和快指针相遇:

第一步,快指针先进入环

第二步:当慢指针刚到达环的入口时,快指针此时在环中的某个位置(也可能此时相遇)

第三步:设此时快指针和慢指针距离为x,若在第二步相遇,则x = 0;

第四步:设环的周长为n,那么看成快指针追赶慢指针,需要追赶n-x;

第五步:快指针每次都追赶慢指针1个单位,设慢指针速度1/s,快指针2/s,那么追赶需要(n-x)s

第六步:在n-x秒内,慢指针走了n-x单位,因为x>=0,则慢指针走的路程小于等于n,即走不完一圈就和快指针相遇

相关文章
|
5月前
|
算法 Go 索引
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
216 15
|
5月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
343 90
|
4月前
|
存储 算法 Go
【LeetCode 热题100】17:电话号码的字母组合(详细解析)(Go语言版)
LeetCode 17题解题思路采用回溯算法,通过递归构建所有可能的组合。关键点包括:每位数字对应多个字母,依次尝试;递归构建下一个字符;递归出口为组合长度等于输入数字长度。Go语言实现中,使用map存储数字到字母的映射,通过回溯函数递归生成组合。时间复杂度为O(3^n * 4^m),空间复杂度为O(n)。类似题目包括括号生成、组合、全排列等。掌握回溯法的核心思想,能够解决多种排列组合问题。
128 11
|
4月前
|
Go
【LeetCode 热题100】155:最小栈(详细解析)(Go语言版)
本文详细解析了力扣热题155:最小栈的解题思路与实现方法。题目要求设计一个支持 push、核心思路是使用辅助栈法,通过两个栈(主栈和辅助栈)来维护当前栈中的最小值。具体操作包括:push 时同步更新辅助栈,pop 时检查是否需要弹出辅助栈的栈顶,getMin 时直接返回辅助栈的栈顶。文章还提供了 Go 语言的实现代码,并对复杂度进行了分析。此外,还介绍了单栈 + 差值记录法的进阶思路,并总结了常见易错点,如 pop 操作时忘记同步弹出辅助栈等。
144 6
|
4月前
|
Go 索引
【LeetCode 热题100】739:每日温度(详细解析)(Go语言版)
这篇文章详细解析了 LeetCode 第 739 题“每日温度”,探讨了如何通过单调栈高效解决问题。题目要求根据每日温度数组,计算出等待更高温度的天数。文中推荐使用单调递减栈,时间复杂度为 O(n),优于暴力解法的 O(n²)。通过实例模拟和代码实现(如 Go 语言版本),清晰展示了栈的操作逻辑。此外,还提供了思维拓展及相关题目推荐,帮助深入理解单调栈的应用场景。
148 6
|
5月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
264 10
|
5月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
278 9
|
5月前
|
算法 Go
【LeetCode 热题100】73:矩阵置零(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 73——矩阵置零问题,提供两种解法:一是使用额外标记数组,时间复杂度为 O(m * n),空间复杂度为 O(m + n);二是优化后的原地标记方法,利用矩阵的第一行和第一列记录需要置零的信息,将空间复杂度降低到 O(1)。文章通过清晰的代码示例与复杂度分析,帮助理解“原地操作”及空间优化技巧,并推荐相关练习题以巩固矩阵操作能力。适合刷题提升算法思维!
144 9
|
5月前
|
算法 Go
【LeetCode 热题100】23:合并 K 个升序链表(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 23——合并 K 个升序链表的两种解法:优先队列(最小堆)和分治合并。题目要求将多个已排序链表合并为一个升序链表。最小堆方法通过维护节点优先级快速选择最小值,;分治合并则采用归并思想两两合并链表。文章提供了 Go 语言实现代码,并对比分析两种方法的适用场景,帮助读者深入理解链表操作与算法设计。
188 10
|
6月前
|
存储 自然语言处理 算法
【LeetCode 热题100】208:实现 Trie (前缀树)(详细解析)(Go语言版)
本文详细解析了力扣热题 208——实现 Trie(前缀树)。Trie 是一种高效的树形数据结构,用于存储和检索字符串集合。文章通过插入、查找和前缀匹配三个核心操作,结合 Go 语言实现代码,清晰展示了 Trie 的工作原理。时间复杂度为 O(m),空间复杂度也为 O(m),其中 m 为字符串长度。此外,还探讨了 Trie 的变种及应用场景,如自动补全和词典查找等。适合初学者深入了解 Trie 结构及其实际用途。
190 14

热门文章

最新文章

推荐镜像

更多
  • DNS