MySQL中的分析表、检查表与优化表如何操作?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL中的分析表、检查表与优化表如何操作?

MySQL提供了分析表、检查表和优化表的语句。分析表主要是分析关键字的分布,检查表主要是检查表是否存在错误,优化表主要是消除删除或者更新造成的空间浪费。

【1】分析表

MySQL中提供了 ANALYZE TABLE 语句分析表,analyze table 语句的基本语法如下:

analyze [local | no_write_to_binlog] table table_name[,tbl_name]....


默认的,MySQL服务会将analyze table语句写到binlog中,以便在主从架构中,从服务能够同步数据。可以添加参数 local 或者 no_write_to_binlog 取消将语句写到binlog中。


使用 analyze table 分析表的过程中,数据库系统会自动对表加一个 只读锁。 在分析期间,只能读取表中的记录,不能更新和插入记录。analyze table 语句能够分析 InnoDB和MyISAM类型的表,但是不能作用于视图。


analyze table分析后的统计结果会反映到 cardinality 的值,该值统计了表中某一键所在的列不重复的值的个数。 该值越接近表中的总行数,则在表连接查询或者索引查询时,就越优先被优化器选择使用。也就是索引列的 cardinality 的值与表中数据的总条数差距越大,即使查询的时候使用了该索引作为查询条件,存储引擎实际查询的时候使用的概率就越小。


下面通过例子来验证一下,cardinality 可以通过 show index from table_name 查看。

CREATE TABLE `user1` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `age` int DEFAULT NULL,
  `sex` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_name` (`name`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1001 DEFAULT CHARSET=utf8mb3;


创建表user1,并插入1000条数据,其中name值均为jane 。此时我们执行 SHOW INDEX FROM user1;

2f0f10f8fc504803b6151fe34fdc33ec.png


如上图所示,Cardinality 列 对于id 是12(其实应该是1000),对于name是1(实际就是1)。我们使用分析表语句 后再次查看:

4728616eae9547ff8164a1c8a62f3a11.png上面结果显示的信息说明如下:


Table:表示分析的表的名称

Op:表示执行的操作。analyze表示进行分析操作

Msg_type:表示信息类型,其值通常是状态(status)、信息(info)、注意(note)、警告(warning)和错误(error)之一。

Msg_text:显示信息。


此时再次查看user表的 Cardinality,如下所示:

SHOW INDEX FROM user1;

可以看到id主键的Cardinality已经修正,和数据总量一致,此时索引已经修复,查询效率大大提高。这个值只要大致相同就表示索引被优化器使用的概率就越大。



我们修改id=2的name值,然后再次分析查看,可以看到Cardinality列已经从 1 变成了 2:

# 修改值
update user1 set name='janus' where id=2;
# 查看索引
SHOW INDEX FROM user1;
# 分析表
analyze table user1;
# 查看索引
SHOW INDEX FROM user1;

我们查看下面SQL的执行计划:

explain select * from user1 where name='jane'

结果如下所示,可以看到虽然name字段上面有索引,但是执行计划中显示type为’ALL’,表示并没有使用到索引。

我们再看下面SQL的执行计划:

explain select * from user1 where name='janus'

结果如下所示,可以看到确实是用到了索引,检索的行数rows为1。

这两个SQL也说明了:

  • 如果取值离散度太小,那么不太适合创建索引
  • 如果创建了索引,那么查询“索引取值少量数据”时才会用到索引

【2】检查表


MySQL中可以使用 CHECK TABLE语句来检查表。CHECK TABLE语句能够检查InnoDB和MyISAM类型的表是否存在错误。 CHECK TABLE语句在执行过程中也会给表加上只读锁。


对于MyISAM类型的表,CHECK TABLE 语句还会更新关键字统计数据。而且 CHECK TABLE也可以检查视图是否有错误,比如在视图定义中被引用的表已不存在。


该语句的基本语法如下:

CHECK TABLE table_name[, table_name] ....[option]...
option={QUICK | FAST | MEDIUM | EXTENDED |CHANGED }

option各个选项的意义分别是:


QUICK:不扫描行,不检查错误的连接

FAST:只检查没有被正确关闭的表

CHANGED:只检查上次检查后被更改的表和没有被正确关闭的表

MEDIUM:扫描行,以验证被删除的连接是有效的。也可以计算各行的关键字校验和,并使用计算出的校验和验证这一点。

EXTENDED:对每行的所有关键字进行一个全面的关键字查找。这可以确保表时100%一致的,但是花的时间较长。


option只对MyISAM类型的表有效,对InnoDB类型的表无效。比如:

check table user1

该语句对于检查的表可能会产生多行信息。最后一行有一个状态的Msg_type值 ,Msg_text通常为OK。如果得到的不是OK,通常要对其进行修复;是OK说明表已经是最新的了。表已经是最新的,意味着存储引擎对这张表不必进行检查。


【3】优化表

① OPTIMIZE TABLE


MySQL中使用optimize table语句来优化表。但是,optimize table语句只能优化表中的varchar、blob或text类型的字段。一个表使用了这些字段的数据类型,若已经删除了表的一大部分数据,或者已经对含有可变长度行的表(含有varchar、blob或text列的表)进行了很多更新,则应使用optimize table来重新利用未使用的空间,并整理数据文件的碎片。


optimize table语句对InnoDB和MyISAM类型的表都有效。该语句在执行过程中也会给表加上只读锁。optimize table语句的基本语法如下:

optimize [local | no_write_to_binlog] table table_name [,table_name]...

ocal | no_write_to_binlog 关键字的意义和分析表相同,都是指定不写入二进制日志。


如下所示,我们在user1中插入十万条数据,占用空间如下:

30692f17214f40a3b71697d62c980323.png


如下所示,我们删除一半数据,再次查看该文件,发现占用大小并未改变

delete from user1 where id>50000

1a185062dba14ba59acd02bc94a1c36e.png


优化表之后再次查看,发现文件占用空间变小:

optimize table user1;



上图(优化结果示意图)是正常的,针对MySQL的InnoDB引擎,optimize结果就是那样的(官网有说明)。在MyISAM中,是先分析这张表,然后会整理相关的MySQL datafile,之后回收未使用的空间。在InnoDB中,回收空间是简单通过alter table 进行整理空间。在优化期间,MySQL会创建一个临时表,优化完成之后会删除原始表,然后会将临时表rename成为原始表。


注意,在多数的设置中,根本不需要运行 optimize table。即使对可变长度的行进行了大量的更新,也不需要经常运行,每周一次或每月一次即可。并且只需要对特定的表运行。


② mysqlcheck

mysqlcheck -o DatabaseName tableName -uroot -p******


mysqlcheck是Linux中的rompt,-o是代表Optimize。


举例:优化所有表:


mysqlcheck -o DatabaseName -u root -p****
# 或
mysqlcheck -o --all-databases -u root -p****


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
3月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
142 0
|
27天前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
71 6
|
2月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
7月前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
2月前
|
SQL 关系型数据库 MySQL
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
|
2月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
117 0
|
4月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
|
5月前
|
SQL 关系型数据库 MySQL
【MySQL】SQL分析的几种方法
以上就是SQL分析的几种方法。需要注意的是,这些方法并不是孤立的,而是相互关联的。在实际的SQL分析中,我们通常需要结合使用这些方法,才能找出最佳的优化策略。同时,SQL分析也需要对数据库管理系统,数据,业务需求有深入的理解,这需要时间和经验的积累。
154 12
|
4月前
|
缓存 JSON 关系型数据库
MySQL 查询优化分析 - 常用分析方法
本文介绍了MySQL查询优化分析的常用方法EXPLAIN、Optimizer Trace、Profiling和常用监控指标。
|
6月前
|
存储 关系型数据库 MySQL
MySQL细节优化:关闭大小写敏感功能的方法。
通过这种方法,你就可以成功关闭 MySQL 的大小写敏感功能,让你的数据库操作更加便捷。
453 19

推荐镜像

更多