MySQL与Redis协同作战:百万级数据统计优化实践

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 【10月更文挑战第21天】在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。

在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。

背景与挑战

随着业务的快速增长,我们面临着一个挑战:需要对百万级别的数据进行实时统计和分析。初始的MySQL查询响应时间缓慢,严重影响了用户体验和系统性能。

解决方案概述

为了解决这个问题,我们采用了MySQL与Redis的组合策略。MySQL负责数据的持久化存储和复杂查询,而Redis则作为高速缓存,存储热点数据和计算结果,以减少对MySQL的直接访问。

实施步骤

1. 数据库优化

首先,我们对MySQL数据库进行了优化,包括索引优化、查询优化和分库分表。

  • 索引优化:为常用的查询字段添加索引,提高查询效率。
  • 查询优化:重写SQL语句,减少不必要的数据加载和复杂的连接操作。
  • 分库分表:将大数据量分散到多个数据库和表中,降低单个数据库的负载。

2. Redis缓存策略

  • 热点数据缓存:将频繁访问但不常变更的数据,如用户信息、配置项等,缓存到Redis中。
  • 计算结果缓存:对于计算密集型的统计结果,我们将其存储在Redis中,避免重复计算。

3. 数据同步

为了保证MySQL和Redis之间的数据一致性,我们实现了数据同步机制。当MySQL中的数据更新时,相应的Redis缓存也会被更新或清除。

4. 异步处理

对于非实时性的数据统计,我们采用了异步处理方式。用户发起统计请求后,任务被放入消息队列,后台服务异步处理,处理结果存储到Redis中。

5. 定期更新统计数据

在业务低峰期,我们定期计算统计数据,并将结果存储在Redis中,以供高峰时段快速读取。

效果评估

通过上述优化措施,我们显著提高了数据统计的查询效率。在某些情况下,查询速度提升了数十倍,用户体验得到了显著改善。

结论

MySQL与Redis的结合使用,为处理百万级数据统计提供了一种有效的解决方案。通过数据库优化、缓存策略、数据同步、异步处理和定期更新统计数据等策略,我们不仅提升了系统的处理能力,也优化了用户体验。这种优化方法不仅适用于数据统计场景,也适用于其他需要处理大规模数据的业务场景,具有广泛的应用价值。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
26天前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
398 7
|
2月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
|
2月前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
76 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
|
4月前
|
缓存 NoSQL Java
Redis应用—6.热key探测设计与实践
热key问题在高并发系统中可能导致数据层和服务层的严重瓶颈,如Redis集群瘫痪和用户体验下降。为解决此问题,京东开发了JdHotkey热key探测框架,具备实时性、准确性、集群一致性和高性能等特点。该框架由etcd集群、Client端jar包、Worker端集群和Dashboard控制台组成,通过分布式计算快速识别热key并推送至应用内存,有效减轻数据层负载,提升服务性能。JdHotkey适用于多种场景,安装部署简便,支持毫秒级热key探测和集群一致性维护。
226 61
Redis应用—6.热key探测设计与实践
|
4月前
|
存储 关系型数据库 MySQL
MySQL细节优化:关闭大小写敏感功能的方法。
通过这种方法,你就可以成功关闭 MySQL 的大小写敏感功能,让你的数据库操作更加便捷。
269 19
|
4月前
|
缓存 NoSQL Redis
Redis如何优化频繁命令往返造成的性能瓶颈?
频繁的命令往返是Redis性能优化中需要重点关注的问题。通过使用Pipeline、Lua脚本、事务、合并命令、连接池以及合理设置网络超时,可以有效减少网络往返次数,优化Redis的性能。这些优化措施不仅提升了Redis的处理能力,还能确保系统在高并发情况下的稳定性和可靠性。
109 14
|
4月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
4月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
5月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
181 9

推荐镜像

更多