大厂面试官:聊下 MySQL 慢查询优化、索引优化?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。

关注△mikechen的互联网架构△,10年+BAT架构经验倾囊相授


image.png

大家好,我是 mikechen | 陈睿

MySQL数据库使用很多,互联网大厂在面试时,也经常都会考察MySQL原理相关问题,特别是优化这块,更是重中之重。

所以,今天重点详解 MySQL慢查询优化、索引优化。

MySQL优化概述

MySQL数据库常见的两个瓶颈是:CPU和I/O的瓶颈。

CPU在饱和的时候一般发生在数据装入内存或从磁盘上读取数据时候

磁盘I/O瓶颈发生在装入数据远大于内存容量的时候,如果应用分布在网络上,当查询量相当大的时候,瓶颈就会出现在网络上

我们可以用mpstat, iostat, sar和vmstat来查看系统的性能状态。除了服务器硬件的性能瓶颈,对于MySQL系统本身,我们可以使用工具来优化数据库的性能。

MySQL优化方案

MySQL 的优化,大体可以分为三部分:索引的优化,sql语句的优化,表的优化

image.png

索引优化

1.索引

一般的应用系统,读写比例在10:1左右,而且,插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的也是最容易出现问题的,还是一些复杂的查询操作,因此对查询语句的优化是重中之重,加速查询最好的方法就是索引

索引:简单的说,相当于图书的目录,可以帮助用户快速的找到需要的内容。

在MySQL中也叫做“”,是存储引擎用于快速找到记录的一种数据结构。能够大大提高查询效率。特别是当数据量非常大,查询涉及多个表时,使用索引往往能使查询速度加快成千上万倍。

总结:

索引的目的,是提高查询效率。

与我们查询图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小结,然后找到页数。相似的例子还有:查字典,查地图等。

2.索引类型

普通索引

是最基本的索引,它没有任何限制。

唯一索引

与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。

组合索引

指多个字段上创建的索引,只有在查询条件中使用了创建索引时的第一个字段,索引才会被使用。

主键索引

是一种特殊的唯一索引,一个表只能有一个主键,不允许有空值。一般是在建表的时候同时创建主键索引。

全文索引

主要用来查找文本中的关键字,而不是直接与索引中的值相比较。

fulltext索引跟其它索引大不相同,它更像是一个搜索引擎,而不是简单的where语句的参数匹配。

fulltext索引配合match against操作使用,而不是一般的where语句加like。它可以在create tablealter tablecreate index使用,不过目前只有charvarchartext 列上可以创建全文索引。

值得一提的是,在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用CREATE index创建fulltext索引,要比先为一张表建立fulltext然后再将数据写入的速度快很多。
AI 代码解读

3.索引优化

  • 只要列中含有NULL值,就最好不要在此例设置索引,复合索引如果有NULL值,此列在使用时也不会使用索引。
  • 尽量使用短索引,如果可以,应该制定一个前缀长度。
  • 对于经常在where子句使用的列,最好设置索引,这样会加快查找速度。
  • 对于有多个列where或者order by子句的,应该建立复合索引。
  • 对于like语句,以%或者‘-’开头的不会使用索引,以%结尾会使用索引。
  • 尽量不要在列上进行运算(函数操作和表达式操作)。
  • 尽量不要使用not in和<>操作。

SQL慢查询的优化

image.png

1.如何捕获低效sql

1)slow_query_log

这个参数设置为ON,可以捕获执行时间超过一定数值的SQL语句。

2)ong_query_time

当SQL语句执行时间超过此数值时,就会被记录到日志中,建议设置为1或者更短。

3)slow_query_log_file

记录日志的文件名。

4)log_queries_not_using_indexes

这个参数设置为ON,可以捕获到所有未使用索引的SQL语句,尽管这个SQL语句有可能执行得挺快。

2.慢查询优化的基本步骤

1)先运行看看是否真的很慢,注意设置SQL_NO_CACHE

2)where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高

3)explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)

4)order by limit 形式的sql语句让排序的表优先查

5)了解业务方使用场景

6)加索引时参照建索引的几大原则

7)观察结果,不符合预期继续从1开始分析

3.优化原则

  • 查询时,能不要就不用,尽量写全字段名。
  • 大部分情况连接效率远大于子查询。
  • 多使用explain和profile分析查询语句。
  • 查看慢查询日志,找出执行时间长的sql语句优化。
  • 多表连接时,尽量小表驱动大表,即小表 join 大表。
  • 在千万级分页时使用limit。
  • 对于经常使用的查询,可以开启缓存。

数据库表优化:

  • 表的字段尽可能用NOT NULL。
  • 字段长度固定的表查询会更快。
  • 把数据库的大表按时间或一些标志分成小表。
  • 将表拆分。

数据表拆分:
主要就是垂直拆分水平拆分

水平切分:将记录散列到不同的表中,各表的结构完全相同,每次从分表中查询, 提高效率。

垂直切分:将表中大字段单独拆分到另外一张表, 形成一对一的关系。

总之:

MySQL 的优化主要就在于:索引的优化,sql语句的优化,表的优化。

在高并发网络环境下,除了优化数据库外,还会涉及到分布式缓存,CDN,数据库读写分离等高并发优化技术。

以上,是MySQL慢查询优化、索引优化的详细解析,欢迎评论区留言交流或拓展。

我是 mikechen | 陈睿 ,关注【mikechen的互联网架构】,10年+BAT架构技术倾囊相授。

新的架构专题内容,第一时间更新至:阿里架构师进阶全部合集

本文已同步我的技术博客 www.mikechen.cc,更新至我原创的《30W+字阿里架构技术合集》中。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
65
分享
相关文章
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
Resume Matcher:增加面试机会!开源AI简历优化工具,一键解析简历和职位描述并优化
Resume Matcher 是一款开源AI简历优化工具,通过解析简历和职位描述,提取关键词并计算文本相似性,帮助求职者优化简历内容,提升通过自动化筛选系统(ATS)的概率,增加面试机会。
89 18
Resume Matcher:增加面试机会!开源AI简历优化工具,一键解析简历和职位描述并优化
美团面试:MySQL为什么 不用 Docker部署?
45岁老架构师尼恩在读者交流群中分享了关于“MySQL为什么不推荐使用Docker部署”的深入分析。通过系统化的梳理,尼恩帮助读者理解为何大型MySQL数据库通常不使用Docker部署,主要涉及性能、管理复杂度和稳定性等方面的考量。文章详细解释了有状态容器的特点、Docker的资源隔离问题以及磁盘IO性能损耗,并提供了小型MySQL使用Docker的最佳实践。此外,尼恩还介绍了Share Nothing架构的优势及其应用场景,强调了配置管理和数据持久化的挑战。最后,尼恩建议读者参考《尼恩Java面试宝典PDF》以提升技术能力,更好地应对面试中的难题。
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
104 22
MySQL底层概述—8.JOIN排序索引优化
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
122 15
MySQL底层概述—7.优化原则及慢查询
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
京东面试:MySQL MVCC是如何实现的?如何通过MVCC实现读已提交、可重复读隔离级别的?
1.请解释什么是MVCC,它在数据库中的作用是什么? 2.在MySQL中,MVCC是如何实现的?请简述其工作原理。 3.MVCC是如何解决读-写和写-写冲突的? 4.在并发环境中,当多个事务同时读取同一行数据时,MVCC是如何保证每个事务看到的数据版本是一致的? 5.MVCC如何帮助提高数据库的并发性能?
京东面试:MySQL MVCC是如何实现的?如何通过MVCC实现读已提交、可重复读隔离级别的?
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
45 9
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
91 9

热门文章

最新文章