Python高级数据结构——AVL树

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Python高级数据结构——AVL树

Python中的AVL树:高级数据结构解析

AVL树是一种自平衡二叉搜索树,它能够在每次插入或删除节点时通过旋转操作来保持树的平衡。在本文中,我们将深入讲解Python中的AVL树,包括AVL树的基本概念、平衡性维护、插入、删除和查询操作,并使用代码示例演示AVL树的使用。

基本概念

1. AVL树的平衡性

AVL树保持平衡的关键在于每个节点的平衡因子(Balance Factor),即左子树的高度减去右子树的高度。平衡因子的绝对值不能超过1,否则树就不再平衡,需要通过旋转操作进行调整。

class AVLNode:
    def __init__(self, key, left=None, right=None):
        self.key = key
        self.left = left
        self.right = right
        self.height = 1  # 节点高度

class AVLTree:
    def __init__(self):
        self.root = None

    # 获取节点高度
    def _height(self, node):
        return node.height if node else 0

    # 更新节点高度
    def _update_height(self, node):
        node.height = max(self._height(node.left), self._height(node.right)) + 1

    # 获取平衡因子
    def _balance_factor(self, node):
        return self._height(node.left) - self._height(node.right)

平衡性维护

2. AVL树的旋转操作

AVL树通过四种旋转操作来保持平衡:左旋、右旋、左右旋和右左旋。

   # 左旋
    def _left_rotate(self, y):
        x = y.right
        T2 = x.left

        x.left = y
        y.right = T2

        self._update_height(y)
        self._update_height(x)

        return x

    # 右旋
    def _right_rotate(self, x):
        y = x.left
        T2 = y.right

        y.right = x
        x.left = T2

        self._update_height(x)
        self._update_height(y)

        return y

    # 左右旋
    def _left_right_rotate(self, z):
        z.left = self._left_rotate(z.left)
        return self._right_rotate(z)

    # 右左旋
    def _right_left_rotate(self, z):
        z.right = self._right_rotate(z.right)
        return self._left_rotate(z)

插入操作

3. AVL树的插入

在AVL树中插入新节点后,需要检查每个祖先节点的平衡因子,并进行必要的旋转操作以保持平衡。

   # 插入节点
    def insert(self, root, key):
        if not root:
            return AVLNode(key)

        if key < root.key:
            root.left = self.insert(root.left, key)
        else:
            root.right = self.insert(root.right, key)

        # 更新节点高度
        self._update_height(root)

        # 获取平衡因子
        balance = self._balance_factor(root)

        # 平衡性维护
        if balance > 1:
            if key < root.left.key:
                return self._right_rotate(root)
            else:
                return self._left_right_rotate(root)
        if balance < -1:
            if key > root.right.key:
                return self._left_rotate(root)
            else:
                return self._right_left_rotate(root)

        return root

    def insert_key(self, key):
        self.root = self.insert(self.root, key)

删除操作

4. AVL树的删除

在AVL树中删除节点后,同样需要检查每个祖先节点的平衡因子,并进行必要的旋转操作以保持平衡。

  # 删除节点
    def delete(self, root, key):
        if not root:
            return root

        if key < root.key:
            root.left = self.delete(root.left, key)
        elif key > root.key:
            root.right = self.delete(root.right, key)
        else:
            # 节点包含一个或零个子节点
            if not root.left:
                return root.right
            elif not root.right:
                return root.left

            # 节点包含两个子节点,找到右子树的最小节点
            temp = self._min_value_node(root.right)
            root.key = temp.key
            root.right = self.delete(root.right, temp.key)

        # 更新节点高度
        self._update_height(root)

        # 获取平衡因子
        balance = self._balance_factor(root)

        # 平衡性维护
        if balance > 1:
            if self._balance_factor(root.left) >= 0:
                return self._right_rotate(root)
            else:
                return self._left_right_rotate(root)
        if balance < -1:
            if self._balance_factor(root.right) <= 0:
                return self._left_rotate(root)
            else:
                return self._right_left_rotate(root)

        return root

    def delete_key(self, key):
        self.root = self.delete(self.root, key)

查询操作

5. AVL树的查询

AVL树的查询操作与普通的二叉搜索树相同,通过递归实现。

   # 查询节点
    def search(self, root, key):
        if not root or root.key == key:
            return root

        if root.key < key:
            return self.search(root.right, key)
        return self.search(root.left, key)

    def search_key(self, key):
        return self.search(self.root, key)

应用场景

AVL树适用于需要频繁进行插入和删除操作,并且希望维持树的平衡性的场景。典型的应用场景包括数据库索引、编译器中的符号表等。

总结

AVL树是一种自平衡二叉搜索树,通过旋转操作保持树的平衡。在Python中,我们可以使用类似上述示例的

目录
相关文章
|
3天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
21 5
|
24天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
61 16
|
2月前
|
Python
Python 中常见的数据结构(二)
Python 中常见的数据结构(二)
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
24 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 算法 数据管理
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
这篇文章通过需求分析、代码实现和测试验证,详细介绍了二叉排序树的创建、遍历和删除操作,以及二叉平衡树(AVL)的自平衡特性和单旋转操作,旨在提高树结构在数据管理中的效率和性能。
32 0
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
|
2月前
|
存储 索引 Python
Python 中常见的数据结构(一)
Python 中常见的数据结构(一)
|
2月前
|
存储 索引 Python
python数据结构之列表详解
列表是Python中极为灵活和强大的数据结构,适合于存储和操作有序数据集合。掌握其基本操作和高级特性对于编写高效、清晰的Python代码至关重要。通过本回答,希望能帮助你全面理解Python列表的使用方法,从而在实际编程中更加游刃有余。
26 0
|
2月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
32 0
|
2月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
28 0