基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于大规模MIMO通信系统的半盲信道估计算法涉及多个步骤,其原理和数学公式概括如下:

    首先,MIMO系统需要发送已知的训练序列,在接收端进行初始的信道估计。当发送有用的信息数据时,接收端会利用初始的信道估计结果进行判决更新,以完成实时的信道估计。

    在此基础上,半盲信道估计算法结合了盲估计和基于训练序列估计这两种方法的特点。一般来讲,通过设计训练序列或在数据中周期性地插入导频符号来进行估计是一种常见的方式。
AI 代码解读

半盲信道估计的数学公式可以表示为:

H^S = (1/T) Σ_t=1^T [y_t conj(H_t) / (1 + Σ_i=1^L conj(H_i) y_t conj(H_i)^)] (5)

   其中,H^S是大规模MIMO信道的估计结果,y_t是接收信号向量,conj(H_t)是H_t的共轭转置,L是导频符号的数量,conj(H_i)^*是H_i的共轭转置的复数共轭。

    这个公式基于盲估计的思想,利用了调制信号本身固有的、与具体承载信息比特无关的一些特征,或是采用了判决反馈的方法来进行信道估计。同时,通过在发送的有用数据中插入已知的导频符号,可以得到导频位置的信道估计结果,进而利用导频位置的信道估计结果,通过内插得到有用数据位置的信道估计结果。

    因此,半盲信道估计算法不仅利用了基于训练序列的初始估计和实时判决更新,也结合了盲估计的方法特点,可以更加准确地估计大规模MIMO信道。

   需要注意的是,半盲信道估计算法在实际应用中还需要考虑其他因素,如训练序列设计、导频符号的选择和插入、判决反馈机制的实现等。这些因素都可能对算法的性能和实际应用产生影响。因此,在实际应用中需要根据具体情况进行算法优化和调整。
AI 代码解读

4.部分核心程序

nIter = 1; 
Yp    = Y(:,1:L_polit,:);     %与导频序列相对应的部分
qmse1  = zeros(1,len); %EM算法的MSE
for k=1:len %计算所有SNR的EM算法的MSE
    G0   = zeros(Nant,Nuser); %初始状态
    mIu0 = zeros(Nuser,N);   
    sgm0 = zeros(Nuser,Nuser);  
    for i=1:nIter
        G0 = (Yp(:,:,k)*Polits' + Y(:,L_polit:N-1,k)*mIu0(:,L_polit:N-1)')/ (Polits*Polits' + mIu0(:,L_polit:N-1)*mIu0(:,L_polit:N-1)' + (N-L_polit)*sgm0);
        for j=1:N
             mIu0(:,j) = (G0'*G0 + sigmaNu(k)*eye(Nuser))\(G0'*Y(:,j,k));
        end
        sgm0 = sigmaNu(k)*eye(Nuser)/(G0'*G0 + sigmaNu(k)*eye(Nuser));
    end
    qmse1(k) = trace(abs((G-G0)'*(G-G0)))/mean(beta2);  
end

nIter = 5; 
Yp    = Y(:,1:L_polit,:);     %与导频序列相对应的部分
qmse2  = zeros(1,len); %EM算法的MSE
for k=1:len %计算所有SNR的EM算法的MSE
    G0   = zeros(Nant,Nuser); %初始状态
    mIu0 = zeros(Nuser,N);   
    sgm0 = zeros(Nuser,Nuser);  
    for i=1:nIter
        G0 = (Yp(:,:,k)*Polits' + Y(:,L_polit:N-1,k)*mIu0(:,L_polit:N-1)')/ (Polits*Polits' + mIu0(:,L_polit:N-1)*mIu0(:,L_polit:N-1)' + (N-L_polit)*sgm0);
        for j=1:N
             mIu0(:,j) = (G0'*G0 + sigmaNu(k)*eye(Nuser))\(G0'*Y(:,j,k));
        end
        sgm0 = sigmaNu(k)*eye(Nuser)/(G0'*G0 + sigmaNu(k)*eye(Nuser));
    end
    qmse2(k) = trace(abs((G-G0)'*(G-G0)))/mean(beta2);  
end
AI 代码解读
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
打赏
0
1
1
1
215
分享
相关文章
基于SC-FDE单载波频域均衡MQAM通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容主要介绍基于MATLAB的SC-FDE单载波频域均衡通信链路设计与实现,包括UW序列设计、QAM调制、帧同步、定时同步、载波同步、SNR估计和MMSE信道估计等关键环节。通过仿真(MATLAB 2022a),验证了系统的可行性和性能。核心程序展示了不同QAM调制方式(如256QAM)及同步算法的具体实现,并通过绘图展示帧同步、定时同步和频偏补偿效果。此研究为优化通信系统性能提供了理论与实践基础。
38 0
开关磁阻电机(SRM)系统的matlab性能仿真与分析
本课题基于MATLAB 2022a对开关磁阻电机(SRM)系统进行性能仿真与分析,涵盖平均转矩、转矩脉动、自感与互感、功率及效率等关键参数的对比研究。通过程序仿真,生成了相电流、转子角度、机械转速等多维度数据关系图。SRM以其无刷、无永磁体的特点,具备高可靠性和低成本优势,其工作原理基于磁阻最小原则,通过控制定子绕组电流实现连续旋转运动。核心程序实现了不同电流下平均转矩的计算与可视化,为SRM优化设计提供了理论依据。
基于DVB-T的COFDM+16QAM+Viterbi编解码图传通信系统matlab仿真,包括载波定时同步,信道估计
本内容展示了基于DVB-T的COFDM+16QAM+Viterbi编解码通信链路的算法仿真与实现。通过Matlab2022a仿真,验证了系统性能(附无水印完整代码运行结果截图)。该系统结合COFDM、16QAM调制和Viterbi编解码技术,具备高效传输与抗多径衰落能力。核心程序涵盖加循环前缀、瑞利多径衰落信道模拟、符号同步、细定时估计等关键步骤,并实现了图像数据的二进制转换与RGB合并展示。理论部分详细解析了载波同步、定时同步及信道估计模块的功能与原理,为数字视频广播系统的开发提供了全面参考。
59 19
基于SC-FDE单载波频域均衡的MPSK通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容展示了基于MATLAB 2022a的SC-FDE单载波频域均衡通信链路仿真,包括UW序列设计、QPSK调制、帧同步、定时与载波同步、SNR估计及MMSE信道估计等关键环节。通过8张仿真结果图验证了系统性能。理论部分详述了单载波频域均衡技术原理,以及各模块的设计与实现步骤。核心程序代码涵盖调制方式选择(如QPSK)、UW序列生成、数据帧构建、信道模拟及同步补偿等操作,为高效数据传输提供了完整解决方案。
55 19
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
60 9
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
基于扩频解扩+turbo译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖16QAM调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,通过扩频解扩和Turbo译码提升抗干扰能力。核心程序包括图像源处理、16QAM调制、扩频编码、信道传输、解扩及Turbo译码,最终还原并显示RGB图像。仿真结果无水印,操作步骤配有视频指导。
55 5
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
312 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等