长短期记忆(LSTM):突破性的序列训练技术

简介: 长短期记忆(LSTM):突破性的序列训练技术

长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

Why

LSTM提出的动机是为了解决长期依赖问题

长期依赖(Long Term Dependencies)

在深度学习领域中(尤其是RNN),“长期依赖“问题是普遍存在的。长期依赖产生的原因是当神经网络的节点经过许多阶段的计算后,之前比较长的时间片的特征已经被覆盖,例如下面例子

eg1: The cat, which already ate a bunch of food, was full.
      |   |     |      |     |  |   |   |   |     |   |
     t0  t1    t2      t3    t4 t5  t6  t7  t8    t9 t10
eg2: The cats, which already ate a bunch of food, were full.
      |   |      |      |     |  |   |   |   |     |    |
     t0  t1     t2     t3    t4 t5  t6  t7  t8    t9   t10

我们想预测'full'之前系动词的单复数情况,显然full是取决于第二个单词’cat‘的单复数情况,而非其前面的单词food。根据RNN的结构,随着数据时间片的增加,RNN丧失了学习连接如此远的信息的能力。

LSTM vs. RNN

相比RNN只有一个传递状态 $h^t$ ,LSTM有两个传输状态,一个 $c^t$ (cell state),和一个 $h^t$ (hidden state)。(Tips:RNN中的 $h^t$ 对于LSTM中的 $c^t$ )

其中对于传递下去的 $c^t$ 改变得很慢,通常输出的 $c^t$ 是上一个状态传过来的 $c^{t-1}$ 加上一些数值。

而 $h^t$ 则在不同节点下往往会有很大的区别。

Model 详解

状态计算

首先使用LSTM的当前输入 $x^t$ 和上一个状态传递下来的 $h^{t-1}$ 拼接训练得到四个状态。

其中, $z^f$ , $z^i$ ,$z^o$ 是由拼接向量乘以权重矩阵之后,再通过一个 $sigmoid$ 激活函数转换成0到1之间的数值,来作为一种门控状态。而 $z$ 则是将结果通过一个 $tanh$ 激活函数将转换成-1到1之间的值(这里使用 $tanh$ 是因为这里是将其做为输入数据,而不是门控信号)。

计算过程

⊙ 是Hadamard Product,也就是操作矩阵中对应的元素相乘,因此要求两个相乘矩阵是同型的。 ⊕ 则代表进行矩阵加法。

LSTM内部主要有三个阶段:

  1. 忘记阶段。这个阶段主要是对上一个节点传进来的输入进行选择性忘记。简单来说就是会 “忘记不重要的,记住重要的”。

具体来说是通过计算得到的 $z^f$ (f表示forget)来作为忘记门控,来控制上一个状态的 $c^{t-1}$ 哪些需要留哪些需要忘。

  1. 选择记忆阶段。这个阶段将这个阶段的输入有选择性地进行“记忆”。主要是会对输入 $x^t$ 进行选择记忆。哪些重要则着重记录下来,哪些不重要,则少记一些。当前的输入内容由前面计算得到的 $z$ 表示。而选择的门控信号则是由 $z^i$ (i代表information)来进行控制。

将上面两步得到的结果相加,即可得到传输给下一个状态的 $c^t$ 。也就是上图中的第一个公式。

  1. 输出阶段。这个阶段将决定哪些将会被当成当前状态的输出。主要是通过 $z^o$ 来进行控制的。并且还对上一阶段得到的 $c^o$进行了放缩(通过一个tanh激活函数进行变化)。

与普通RNN类似,输出 $y^t$ 往往最终也是通过 $h^t$ 变化得到。

Code

现在,我们从零开始实现长短期记忆网络。 与 8.5节中的实验相同, 我们首先加载时光机器数据集。

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
  • 初始化模型参数

定义和初始化模型参数。 如前所述,超参数num_hiddens定义隐藏单元的数量。 我们按照标准差0.01的高斯分布初始化权重,并将偏置项设为0。

def get_lstm_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xi, W_hi, b_i = three()  # 输入门参数
    W_xf, W_hf, b_f = three()  # 遗忘门参数
    W_xo, W_ho, b_o = three()  # 输出门参数
    W_xc, W_hc, b_c = three()  # 候选记忆元参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
              b_c, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
  • 定义模型
def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),
            torch.zeros((batch_size, num_hiddens), device=device))

def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
     W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
        F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
        O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
        C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * torch.tanh(C)
        Y = (H @ W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H, C)
  • 训练和预测
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
                            init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

# perplexity 1.3, 17736.0 tokens/sec on cuda:0
# time traveller for so it will leong go it we melenot ir cove i s
# traveller care be can so i ngrecpely as along the time dime

总结

  • 长短期记忆网络有三种类型的门:输入门、遗忘门和输出门。
  • 长短期记忆网络的隐藏层输出包括“隐状态”和“记忆元”。只有隐状态会传递到输出层,而记忆元完全属于内部信息。
  • 长短期记忆网络可以缓解梯度消失和梯度爆炸。

Ref

  1. https://zhuanlan.zhihu.com/p/32085405
  2. https://zhuanlan.zhihu.com/p/42717426
  3. https://zh.d2l.ai/chapter_recurrent-modern/lstm.html
相关文章
|
2天前
|
机器学习/深度学习 数据可视化 数据挖掘
Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析
Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析
14 5
|
4天前
|
机器学习/深度学习 算法 算法框架/工具
PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
10 0
|
4天前
|
机器学习/深度学习 编解码 算法
R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例
R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例
|
6天前
|
机器学习/深度学习 数据可视化 网络架构
Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
21 8
|
7天前
|
机器学习/深度学习 算法 Python
Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
48 12
|
2月前
|
机器学习/深度学习 自然语言处理 数据处理
大模型开发:描述长短期记忆网络(LSTM)和它们在序列数据上的应用。
LSTM,一种RNN变体,设计用于解决RNN处理长期依赖的难题。其核心在于门控机制(输入、遗忘、输出门)和长期记忆单元(细胞状态),能有效捕捉序列数据的长期依赖,广泛应用于语言模型、机器翻译等领域。然而,LSTM也存在计算复杂度高、解释性差和数据依赖性强等问题,需要通过优化和增强策略来改进。
|
7天前
|
机器学习/深度学习 算法 算法框架/工具
数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
27 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法
46 2
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【MATLAB】REMD_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】REMD_ MFE_SVM_LSTM 神经网络时序预测算法
44 5
|
8天前
|
机器学习/深度学习 传感器 数据可视化
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
24 1
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类

热门文章

最新文章