m基于5G通信的超密集网络多连接负载均衡和资源分配算法matlab仿真

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: m基于5G通信的超密集网络多连接负载均衡和资源分配算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1b4aaeae6a7d5980ce9b83f6837f8c63_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
e98f25a1afd0f46e893a96e39087a443_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
1bd03adbbaac5bd0d15d0832179e61cd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
5G模型的基本结构如下所示:

c84755d99c0265f886a7742fd39cd601_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   超密集网络是5G通信系统中的重要技术,是现在通信界的研究热点。系统中的每个小小区都是正交频分多址系统,共有TV个小小区,每个小小区使用个OFDMA子载波,信道增益为G。根据其结构图可知,当然超密集网络由大量小小区部署,小小区是低功率无线接入节点,工作在授权的频谱,而宏基站的覆盖范围可达数公里。

    超密集网络(UDN,Ultra-Dense Network)是5G网络的一个重要特征,它通过在热点区域增加大量的低功率节点来提高网络容量和覆盖率。然而,UDN的部署也带来了许多挑战,其中之一就是多连接负载均衡和资源分配问题。为了解决这个问题,我们可以设计一种基于5G通信的超密集网络多连接负载均衡和资源分配算法。

    在UDN中,由于节点密度极高,因此很可能会出现多个节点同时请求相同资源的情况,导致资源竞争加剧。此外,由于节点数量众多,网络中的负载分布可能非常不均衡。因此,我们需要在保证网络整体性能的前提下,实现多连接负载均衡和资源分配。

   我们的算法基于以下原理:首先,我们通过测量每个节点的负载情况,以及每个节点与目标之间的距离和信道质量等信息,来评估每个节点的可用性和可靠性;然后,我们根据这些信息,为每个连接分配适当的资源,以确保负载均衡和网络性能最优。

   在算法中,如果多个基站对某个用户进行资源分配,其遵循的原则如下所示:

    以2个基站和1个用户为例子,当2个基站同时对一个用户资源配置,基站采用平均方式给用户自己分配,即多个基站分配出相同的资源给用户进行使用。首先定义系统的总吞吐量为优化目标(注意,在条件相同的情况下,总的吞吐量大,那么意味着用户接入速率,用户平均速率,SINR,等性能指标也较好,因此以该指标为优化目标)

de5273426d876bdcbe5813ca2a021a23_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序
```Nbs = 4;
%用户个数Nbs个小小区,每个小小区使用K个OFDMA子载波
Nuser = 64;%设置64,128,256等幂次方,或者较大的数据,否则报错或者结果不符合实际情况
%仿真信噪比
SNRs =[2:2:20];

%以下是5G系统,使用的OFDM+OQAM调制方式发送和接收数据的相关参数
%信号发送功率
Pow = 1;
%噪声功率
Pnoise = Pow./10.^(SNRs./10);
%总的功率
Pt = PowNuser.(1+rand(1,Nbs)); %模拟不同基站之间的差异
%数据发送速率
Rb = 10e6;
%采样率
Nsamp = 8;
%每个OFDM符号对应的bit数
Rt = 256;
%信号带宽
Bw = 5e6;
%每个子载波带宽
Bw_sub = Bw/Nuser;
%OFDM保护带长度
Lgi = 8;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%5G信道相关参数
%多径时延
Mdelay = 2;
%最大多径时延
Mdelay2 = 16;
%多径个数
Nmulti = 4;
for ii=1:length(SNRs)

%信道估计
%负载均衡初始状态计算
for ij = 1:Nbs

.................................................................................
%产生5G密集网络的多径信道
for ij = 1:Nbs
%不同基站,其和用户之间的信号会有差异
[path_delay,path_amp] = func_Multipath(Mdelay,Mdelay2,Nmulti,ij);
%信道估计
[Hest,Channel_p] = func_Channel_est(path_delay,path_amp,Nuser);
gain_subc = abs(Hest);
Err = 0;
for jj=1:Nums
rng(jj)
jj
ii
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%以下为一个完整的5G信号由基站发送给用户的通信流程
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%产生随机数据信息
Tsignal = round(rand(1,Rt));
%首先进行资源分配
[Sub_bit0,Sub_pw0]= func_chow(Nuser,gain_subc,Rt,Pnoise(ii),Pt(ij));
%将负载高的基站业务,部分转移到负载低的基站上
[Sub_bit1,Sub_pw1] = func_maxsinr_loadbalance(Sub_bit0,Sub_pw0,Max_Rate(ij));
%优化处理
[Sub_bit,Sub_pw] = func_GA_Resource_allocation1(Sub_bit1,Rt,gain_subc,Pnoise(ii),Nuser,Pt(ij),Hest,Bw,Max_Rate(ij),Nbs);

        %串并处理
        Tsignal_S2P      = func_S2P(Tsignal,Sub_bit,Nsamp);
        %基于OFDM+OQAM的5G密集网络调制处理过程
        Tsignal_QAM      = func_OQAM_mod(Tsignal_S2P,Sub_pw,Sub_bit);
        Tsignal_IFFT     = sqrt(Nuser).*ifft(Tsignal_QAM);
        Tsignal_GI       = func_GI_insert(Tsignal_IFFT,Lgi);
        %通过信道
        Tsignal_multi    = func_add_multipath(Tsignal_GI,Channel_p);
        Tsignal_AWGN     = awgn(Tsignal_multi,SNRs(ii),'measured');
        %开始接收信号
        %OFDM+OQAM解调
        Rsignal_noGI     = Tsignal_AWGN(Lgi+1:length(Tsignal_AWGN));
        Rsignal_FFT      = 1/sqrt(Nuser).*fft(Rsignal_noGI);
        Rsignal_est      = func_Rest(Rsignal_FFT,Hest);
        Rsignal_QAM      = func_OQAM_demod(Rsignal_est,Sub_bit,Sub_pw,Nsamp);
        %并串处理
        Rsignal_P2S      = func_P2S(Rsignal_QAM,Sub_bit,Rt);
    end
    Error1(ii,ij)=Err/Nums;
end

end

figure;
semilogy(SNRs,mean(Error1,2),'b-s');
grid on;
xlabel('SNR');
ylabel('ber');
save new_error.mat SNRs Error1
```

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
2天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
116 10
|
4月前
|
自动驾驶 5G
5G技术中的时分双工(TDD)与频分双工(FDD)的应用区别
5G技术中的时分双工(TDD)与频分双工(FDD)的应用区别
802 63
|
3月前
|
物联网 5G 智能硬件
介绍频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术
在无线通信领域,专业术语是理解技术的关键。本文详细介绍了频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术,还涵盖了信号传播、信道容量、信噪比等深入概念。通过本文,你将掌握无线技术的核心知识,成为半个无线专家。
361 4
|
3月前
|
传感器 监控 自动驾驶
|
3月前
|
边缘计算 物联网 5G
5G小基站技术:解决室内覆盖难题
【10月更文挑战第25天】
199 5
|
3月前
|
人工智能 运维 数据挖掘
跨界融合:AI与5G技术如何共同推动数字化转型
【10月更文挑战第29天】本文探讨了人工智能(AI)与第五代移动通信技术(5G)的结合如何推动数字化转型。通过高速、低延迟的5G网络和AI的数据分析能力,两者相辅相成,实现了智能化网络运维、增强网络功能和多行业的实际应用。文中提供了网络流量预测和故障预测的示例代码,展示了技术的实际应用潜力。
91 1
|
3月前
|
运维 安全 5G

热门文章

最新文章