C++算法前缀和的应用:得分最高的最小轮调的原理、源码及测试用例

简介: C++算法前缀和的应用:得分最高的最小轮调的原理、源码及测试用例

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

题目

给你一个数组 nums,我们可以将它按一个非负整数 k 进行轮调,这样可以使数组变为 [nums[k], nums[k + 1], … nums[nums.length - 1], nums[0], nums[1], …, nums[k-1]] 的形式。此后,任何值小于或等于其索引的项都可以记作一分。

例如,数组为 nums = [2,4,1,3,0],我们按 k = 2 进行轮调后,它将变成 [1,3,0,2,4]。这将记为 3 分,因为 1 > 0 [不计分]、3 > 1 [不计分]、0 <= 2 [计 1 分]、2 <= 3 [计 1 分],4 <= 4 [计 1 分]。

在所有可能的轮调中,返回我们所能得到的最高分数对应的轮调下标 k 。如果有多个答案,返回满足条件的最小的下标 k 。

示例 1:

输入:nums = [2,3,1,4,0]

输出:3

解释:

下面列出了每个 k 的得分:

k = 0, nums = [2,3,1,4,0], score 2

k = 1, nums = [3,1,4,0,2], score 3

k = 2, nums = [1,4,0,2,3], score 3

k = 3, nums = [4,0,2,3,1], score 4

k = 4, nums = [0,2,3,1,4], score 3

所以我们应当选择 k = 3,得分最高。

示例 2:

输入:nums = [1,3,0,2,4]

输出:0

解释:

nums 无论怎么变化总是有 3 分。

所以我们将选择最小的 k,即 0。

提示:

1 <= nums.length <= 10^5

0 <= nums[i] < nums.length

分析

我可以将结果分为两部分,左边(i < k )得分,右边(i>k)得分。iSub是值减去当前索引,iSub小于等于0,则加分。我们以{1,5,2,4,3}为例。

对于左边

iSub=num[i]-i-(m_c-k)

k取值 左边的值减当前索引 旧数据变化分数变化 新增加的数据分数变化 总分数
0 {} +0 +0 0
1 {- 3} +0 +1 1
2 {-2,1} +0 +0 1
3 {-1,2,- 2} +0 +1 2
4 {0,3,-1,0} +0 +1 3

如果遍历所有旧值,那总时间复杂度会达到O(n*n),超时。实际上我们值需要统计新iSub是1的值,也就是num[i]-i-(m_c-k) 等于1,也就是初始iSum 等于= 1 + m_c-k,这样总时间复杂度是O(1)。

对于右边

iSum = num[i] - i + k

k取值 值减当前索引 旧数据变化分数变化 新增加的数据分数变化 总分数
4 {3} +0 +0 0
3 {4,2} +0 +0 0
2 {2,3,1} +0 +0 0
1 {5,1,2,0} +1 +0 1
0 {1,4,0,1,-1} +1 +0 2
k减少1,iSub也减少1

思路

mLeftSubToNum和mRightSubToNum记录初始nums[i]-i 。i>=k,记录在mRightSubToNum;否则记录子mLeftSubToNum。

核心代码

class Solution {
public:
int bestRotation(vector& nums) {
m_c = nums.size();
//mLeftSubToNum和mRightSubToNum记录初始nums[i]-i 。i>=k,记录在mRightSubToNum;否则记录子mLeftSubToNum
unordered_map<int, int> mLeftSubToNum, mRightSubToNum;
m_vRet.resize(m_c);
vector<int> vLeft(m_c);//vLeft[i]记录初始i < k的分数
  {
    int iPre = 0;
    for (int k = 1; k < m_c; k++)
    {
      //将k-1从右边移动到左边
      const int iSub = nums[k - 1] - (k - 1);
      if (iSub - (m_c - k) <= 0)
      {//新增加的值得一分
        iPre++;
      }
      iPre -= mLeftSubToNum[1 + m_c - k];
      vLeft[k] = iPre;
      mLeftSubToNum[iSub]++;
    }
  }
  vector<int> vRight(m_c);
  {
    int iPre = 0;
    for (int k = m_c-1; k >= 0 ; k-- )
    {
      const int iSub = nums[k] - k;
      if (iSub + k <= 0)
      {
        iPre++;
      }
      if (mRightSubToNum.count(-k))
      {
        iPre += mRightSubToNum[-k];
      }
      vRight[k] = iPre;
      mRightSubToNum[iSub]++;
    }
  }
  //m_vRet[k]记录的分值
  for (int i = 0 ; i < m_c ;i++ )
  {     
    m_vRet[i] = vLeft[i] + vRight[i];
  }
  //本题一定有答案,所以不用判断非法值
  return std::max_element(m_vRet.begin(), m_vRet.end()) - m_vRet.begin();
}
vector<int> m_vRet;
int m_c;

};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}
template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
int main()
{
vector nums = { 1,5,2,4,3 };
Solution sln;
auto res = sln.bestRotation(nums);
Assert(res, 4);
Assert({ 2,2,1,2,3 }, sln.m_vRet);
nums = { 2,3,1,4,0 };
res = sln.bestRotation(nums);
Assert(res, 3);
Assert({ 2,3,3,4,3 },sln.m_vRet );
nums = { 1,3,0,2,4 };
res = sln.bestRotation(nums);
Assert(res, 0);
Assert({ 3,3,3,3,3 }, sln.m_vRet);
//CConsole::Out(res);

}

2023年4月

旧版仅供参考

class Solution {
public:
int bestRotation(vector& nums) {
std::unordered_map<int, int> mLeftSumNums;
int iScore = 0;
for (int i = 0; i < nums.size(); i++)
{
const int iSub = nums[i] - i;
mLeftSumNums[iSub]++;
if (iSub <= 0)
{
iScore++;
}
}
std::unordered_map<int, int> mRightSumNums;
  int iMaxScore = iScore;
  int iMaxIndex = 0;
  for (int i = 1; i < nums.size(); i++)
  {     
    if (nums[i - 1] <= 0 )
    {
      iScore--;
    }
    const int iSub = nums[i - 1] - (i - 1);
    mLeftSumNums[iSub]--;
    iScore -= mLeftSumNums[-(i-1)];
    //右边,部分不再加分
    iScore -= mRightSumNums[-(i-1)];
    const int iRightSub = nums[i-1] - (nums.size() - 1) - i;
    mRightSumNums[iRightSub]++;
    if ( (nums[i-1] - ((int)nums.size() - 1)) <= 0)
    {
      iScore++;
    }
    if (iScore > iMaxScore)
    {
      iMaxScore = iScore;
      iMaxIndex = i;
    }
  }
  return iMaxIndex;
}

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

鄙人想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 C++17


相关文章
|
11天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
34 2
|
19天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
17天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
21天前
|
编译器 C语言 C++
【c++丨STL】list模拟实现(附源码)
本文介绍了如何模拟实现C++中的`list`容器。`list`底层采用双向带头循环链表结构,相较于`vector`和`string`更为复杂。文章首先回顾了`list`的基本结构和常用接口,然后详细讲解了节点、迭代器及容器的实现过程。 最终,通过这些步骤,我们成功模拟实现了`list`容器的功能。文章最后提供了完整的代码实现,并简要总结了实现过程中的关键点。 如果你对双向链表或`list`的底层实现感兴趣,建议先掌握相关基础知识后再阅读本文,以便更好地理解内容。
25 1
|
2月前
|
C语言 C++ 容器
【c++丨STL】string模拟实现(附源码)
本文详细介绍了如何模拟实现C++ STL中的`string`类,包括其构造函数、拷贝构造、赋值重载、析构函数等基本功能,以及字符串的插入、删除、查找、比较等操作。文章还展示了如何实现输入输出流操作符,使自定义的`string`类能够方便地与`cin`和`cout`配合使用。通过这些实现,读者不仅能加深对`string`类的理解,还能提升对C++编程技巧的掌握。
100 5
|
3月前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
963 0
高精度算法(加、减、乘、除,使用c++实现)
|
11天前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
51 18
|
11天前
|
存储 编译器 数据安全/隐私保护
【C++面向对象——类与对象】CPU类(头歌实践教学平台习题)【合集】
声明一个CPU类,包含等级(rank)、频率(frequency)、电压(voltage)等属性,以及两个公有成员函数run、stop。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。​ 相关知识 类的声明和使用。 类的声明和对象的声明。 构造函数和析构函数的执行。 一、类的声明和使用 1.类的声明基础 在C++中,类是创建对象的蓝图。类的声明定义了类的成员,包括数据成员(变量)和成员函数(方法)。一个简单的类声明示例如下: classMyClass{ public: int
37 13
|
11天前
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
37 5
|
11天前
|
存储 算法 搜索推荐
【C++面向对象——群体类和群体数据的组织】实现含排序功能的数组类(头歌实践教学平台习题)【合集】
1. **相关排序和查找算法的原理**:介绍直接插入排序、直接选择排序、冒泡排序和顺序查找的基本原理及其实现代码。 2. **C++ 类与成员函数的定义**:讲解如何定义`Array`类,包括类的声明和实现,以及成员函数的定义与调用。 3. **数组作为类的成员变量的处理**:探讨内存管理和正确访问数组元素的方法,确保在类中正确使用动态分配的数组。 4. **函数参数传递与返回值处理**:解释排序和查找函数的参数传递方式及返回值处理,确保函数功能正确实现。 通过掌握这些知识,可以顺利地将排序和查找算法封装到`Array`类中,并进行测试验证。编程要求是在右侧编辑器补充代码以实现三种排序算法
27 5

热门文章

最新文章