高精度算法(加、减、乘、除,使用c++实现)

简介: 高精度算法(加、减、乘、除,使用c++实现)

一、概念

在我们进行计算的过程中,经常会遇到几十位,甚至几百位的数字的计算问题,也有可能会遇到小数点后几十位,几百位的情况,而我们面对这样的情况下,   和  的数据范围显然是不够使用的了。因此这时,我们就需要引入一个新的算法,叫做高精度算法。


高精度算法:它是处理大数字的数学计算方法,在一般的科学计算中,会经常算到小数点后几百位或者更多,当然也可能是几千亿几百亿的大数字。一般这类数字我们统称为高精度数,高精度算法是用计算机对于超大数据的一种模拟加,减,乘,除等运算。


思想:高精度算法本质上是用字符串模拟数字进行计算,再利用类似于数学里的竖式的形式,一位一位进行相关计算 。

注意事项:

高精度加法:

  1. 倒叙输入,倒序输出,但中间是正着运算;
  2. 相加之后的进位处理;

高精度减法:

  1. 考虑结果出现的正情况;
  2. 前导0的处理;
  3. 考虑减法的借位处理;

高精度乘法:

  1. 前导0的处理(0被相乘);
  2. 可以将乘法单个位数相乘再转化成加法的思想;
  3. 此时题目中没有涉及到负数的情况。如出现负数,只需考虑两个字符串第一位是否为负号,然后结尾特殊判断一下即可;

高精度除法:(高精度÷低精度)

  1. 输入、计算、输出、需要同时逆序或同时正序;
  2. 前导0的处理;
  3. 不能考虑进位的情况


二、数据的处理

2.1 数据的存储

当输入的数很长时,可采用字符串方式输入,这样可输入位数很长的数,利用字符串函数和操作运算,将每一位取出,存入数组中 。

void init(int a[]) { // 传入数组
    string s;
    cin >> s; 
    len = s.length(); // s.length --> 计算字符串位数
    for(int i=1; i<=len; i++)     
        a[i] = s[len -i] - '0'; //将字符串s转换为数组a, 倒序存储
}

2.2 借位和进位

// 加法进位: c[i] = a[i] + b[i]
 
code:    if(c[i] >= 10) {
            c[i] %= 10;
            ++c[i++];
         }
 
//减法借位: c[i] = a[i] - b[i]
 
code:    if(a[i] < b[i]) {
             --a[i+1];
             a[i] += 10;   
         } 
 
//乘法进位: c[i + j - 1] = a[i] * b[j] + x + c[i + j - 1];
          x = c[i + j - 1] / 10;
          c[i + j - 1] % 10;

三、加法

#include<iostream>
#include<cstring>
#include<vector>
 
using namespace std;
 
int main()
{
  char s1[500], s2[500];
  int a[500] = { 0 }, b[500] = { 0 }, c[501] = { 0 };
  int i = 0;
  vector<int>vec_add;
 
  cin >> s1 >>s2;
  int len_s1 = strlen(s1);//求两个“数字”位数
  int len_s2 = strlen(s2);
  for (i = 0;i < len_s1;i++)
  {
    a[i] = s1[len_s1 - i - 1] - '0';//倒叙存储,方便最高位进位,按字符型输入,按整型的方式存储在数组里面
  }
  for (i = 0;i < len_s2;i++)
  {
    b[i] = s2[len_s2 - i - 1] - '0';
  }
  for (i = 0;i < (len_s1 > len_s2 ? len_s1 : len_s2);i++)
  { 
    vec_add.push_back(a[i] + b[i] + c[i]);
    if (vec_add[i] >= 10)//如果可以进位
    {
      c[i + 1] = vec_add[i] / 10;
      vec_add[i] %= 10;
      if (i == (len_s1 > len_s2 ? len_s1 : len_s2))
      {
        vec_add.push_back(1);
      }
    }
  }
  int len_vec_add = vec_add.size();
  for (i = len_vec_add - 1;i >= 0;i--)
  {
    cout << vec_add[i];
  }
  cout << endl;
 
  return 0;
}

运行示例如下:

四、减法

#include<iostream>
#include<cstring>
#include<vector>
 
int main()
{
  char s1[500], s2[500];
  int a[500] = { 0 }, b[500] = { 0 }, c[501] = { 0 };
  int i = 0;
  vector<int>vec;
 
  cin >> s1 >> s2;
  int len_s1 = strlen(s1);//求两个“数字”位数
  int len_s2 = strlen(s2);
  for (i = 0;i < len_s1;i++)
  {
    a[i] = s1[len_s1 - i - 1] - '0';//倒叙存储,方便最高位进位,按字符型输入,按整型的方式存储在数组里面
  }
  for (i = 0;i < len_s2;i++)
  {
    b[i] = s2[len_s2 - i - 1] - '0';
  }
  for (i = 0;i < (len_s1 > len_s2 ? len_s1 : len_s2);i++)
  {
    if (strcmp(s1, s2) >= 0)
    {
      vec.push_back(a[i] - b[i]);
      if (vec[i] < 0)
      {
        a[i + 1] -= 1;
        a[i] += 10;
        vec[i] += 10;
      }
    }
    else
    {
      vec.push_back(b[i] - a[i]);
      if (vec[i] < 0)
      {
        b[i + 1] -= 1;
        b[i] += 10;
        vec[i] += 10;
      }
      
    }
    
  }
  int len_vec = vec.size();
  if (strcmp(s1, s2) >= 0)
  {
    for (i = len_vec - 1;i >= 0;i--)
    {
      cout << vec[i];
    }
  }
  else
  {
    cout << "-";
    for (i = len_vec - 1;i >= 0;i--)
    {
      cout << vec[i];
    }
  }
  cout << endl;
 
  return 0;
}

运行结果如下:

五、乘法

大数乘法可以看成多个数大数乘以一位的数再相加

    1.输入与初始化

    • 从用户那里接收两个字符串s1和s2,它们代表两个大整数。
    • 将这两个字符串转换为数组a和b,使得数组中的元素是从低位到高位存储的整数。这是通过将字符串中的每个字符减去字符'0'的ASCII值来实现的,因为字符'0'到'9'的ASCII值是连续的。
    • 初始化一个整数数组c,用于存储进位值。
    • 初始化一个std::vector<int>(名为vec),用于存储最终的乘积结果。

    2.计算乘积:

    • 使用两层循环来计算ab中每个元素的乘积,并累加到vec中。
    • 外层循环遍历a中的每个元素,内层循环遍历b中的每个元素。
    • 对于ab中的每对元素,计算它们的乘积,并加上之前的进位值(如果有的话)。
    • 将乘积的个位数加到vec的对应位置,并更新进位值。

    3.处理进位:

    • 进位逻辑在内层循环结束后处理。如果最后一个乘法操作后存在进位,需要将其加到vec的下一个位置。
    • 需要注意,由于vec的大小在循环过程中是变化的,因此直接通过索引访问vec可能会导致越界错误。正确的做法是在需要添加新元素时,使用vec.push_back()

    代码示例如下:

    int main()
    {
      char s1[500], s2[500];
      int a[500] = { 0 }, b[500] = { 0 };
      int i = 0;
      int z = 0;
      vector<int>vec;
     
      cin >> s1 >> s2;
      int len_s1 = strlen(s1);//求两个“数字”位数
      int len_s2 = strlen(s2);
      //初始化vec的大小至少为len_s1 + len_s2,这样可以保证在计算过程中不会越界。
      vec.resize(len_s1 + len_s2, 0);
      for (i = 0;i < len_s1;i++)
      {
        a[i] = s1[len_s1 - i - 1] - '0';//倒叙存储,方便最高位进位,按字符型输入,按整型的方式存储在数组里面
      }
      for (i = 0;i < len_s2;i++)
      {
        b[i] = s2[len_s2 - i - 1] - '0';
      }
     
      for (i = 0; i < len_s1; i++)
      {
        int carry = 0; // 每次循环开始时,进位为0  
        for (int j = 0; j < len_s2; j++)
        {
                // 计算乘积,加上已有的值和进位
          int product = a[i] * b[j] + vec[i + j] + carry;   
          vec[i + j] = product % 10; // 取个位数  
          carry = product / 10; // 更新进位  
        }
        // 检查最后一个乘法操作后的进位  
        if (carry > 0)
        {
          vec[i + len_s2] += carry;
        }
      }
      // 处理vec中可能的前导0 
      while (!vec[vec.size() - 1])
      {
        if (vec[vec.size() - 1] == 0)
        {
          vec.pop_back();
        }
      }
      int len_vec = vec.size();
      for (i = len_vec - 1;i >= 0;i--)
      {
        cout << vec[i];
      }
      cout << endl;
     
      return 0;
    }

    测试输出结果如下:

    六、除法

    高精度除以低精度:

    思路:除法时,每一次的商值都在 0~9 之间,每次求得的余数连接以后的若干位得到新的被除数,继续做除法。因此,在做高精度除法时,要涉及到乘法运算和减法运算,还有移位处理。当然,为了程序简洁,可以避免高精度乘法,用 0~9 次循环减法取代得到商的值。采用按位相除法

    #include<iostream>
     
    int main()
    {
        char n1[100];
        int a[100] = { 0 }, c[100] = { 0 }, i, x = 0, b;
        cin >> n1 >> b;
        int len_a = strlen(n1);
     
        for (i = 1; i <= len_a; i++)
        {
            a[i] = n1[i - 1] - '0'; //除法不需要逆序存放
        }
        for (i = 1; i <= len_a; i++)
        {
            c[i] = (a[i] + x * 10) / b;  // 算上上一位剩下的继续除
            x = (a[i] + 10 * x) % b; // 求余
        }
     
        int len_c = 1;
        while (c[len_c] == 0 && len_c < len_a)
        {
            len_c++;
        }
        for (i = len_c; i < len_a; i++)
        {
            cout << c[i];
        }
        return 0;
    }
    相关文章
    |
    2天前
    |
    存储 缓存 关系型数据库
    MySQL事务日志-Redo Log工作原理分析
    事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
    1519 4
    |
    29天前
    |
    弹性计算 人工智能 架构师
    阿里云携手Altair共拓云上工业仿真新机遇
    2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
    阿里云携手Altair共拓云上工业仿真新机遇
    |
    5天前
    |
    人工智能 Rust Java
    10月更文挑战赛火热启动,坚持热爱坚持创作!
    开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
    503 19
    |
    2天前
    |
    存储 SQL 关系型数据库
    彻底搞懂InnoDB的MVCC多版本并发控制
    本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
    179 1
    |
    8天前
    |
    JSON 自然语言处理 数据管理
    阿里云百炼产品月刊【2024年9月】
    阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
    阿里云百炼产品月刊【2024年9月】
    |
    21天前
    |
    存储 关系型数据库 分布式数据库
    GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
    本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
    |
    9天前
    |
    Linux 虚拟化 开发者
    一键将CentOs的yum源更换为国内阿里yum源
    一键将CentOs的yum源更换为国内阿里yum源
    457 5
    |
    7天前
    |
    存储 人工智能 搜索推荐
    数据治理,是时候打破刻板印象了
    瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
    314 2
    |
    23天前
    |
    人工智能 IDE 程序员
    期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
    在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
    |
    25天前
    |
    机器学习/深度学习 算法 大数据
    【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
    2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
    2608 22
    【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析