pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统下GPU版PyTorch(CUDA 12.1)快速安装

简介: pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统下GPU版PyTorch(CUDA 12.1)快速安装

🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁

🦄 个人主页——libin9iOak的博客🎐
🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺
🌊 《IDEA开发秘籍》学会IDEA常用操作,工作效率翻倍~💐
🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥

GPU版本PyTorch(CUDA 12.1)清华源快速安装教程:Windows、Mac和Linux系统

在本教程中,我们将为您提供在Windows、Mac和Linux系统上安装和配置GPU版本的PyTorch(CUDA 12.1)的详细步骤。我们将使用清华大学开源软件镜像站作为软件源以加快下载速度。通过按照以下教程,您将轻松完成GPU版本PyTorch的安装,为深度学习任务做好准备。

注意:在进行安装之前,请确保您的系统满足PyTorch(CUDA 12.1)的硬件要求,并已安装相应的GPU驱动程序和CUDA Toolkit。

教程目录

  1. Windows系统上安装GPU版本PyTorch(CUDA 12.1)
  2. Mac系统上安装GPU版本PyTorch(CUDA 12.1)
  3. Linux系统上安装GPU版本PyTorch(CUDA 12.1)

Windows系统上安装GPU版本PyTorch(CUDA 12.1)

步骤1:检查GPU兼容性

确保您的Windows计算机配备了兼容的NVIDIA GPU。访问NVIDIA官方网站查找GPU的兼容性列表。

步骤2:安装NVIDIA驱动程序

前往NVIDIA官方网站下载并安装适用于您的GPU型号的最新驱动程序。

步骤3:安装CUDA Toolkit

从NVIDIA官方网站下载并安装与您的GPU兼容的CUDA Toolkit(版本12.1)。

步骤4:配置环境变量

将CUDA Toolkit的安装路径添加到系统环境变量中,以便PyTorch能够正确找到CUDA。

步骤5:创建虚拟环境

使用Anaconda创建一个新的虚拟环境(如pytorch310),并激活它。

步骤6:设置清华源

在虚拟环境中,使用以下命令设置清华源以加速安装过程:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

步骤7:安装PyTorch

使用以下命令在Windows系统上安装GPU版本的PyTorch(CUDA 12.1):

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

步骤8:验证安装是否成功

在Python环境中运行以下代码来验证是否成功安装了GPU版本的PyTorch:

import torch
print(torch.cuda.is_available())

如果输出结果为True,则说明PyTorch成功使用了GPU加速,安装完成。

Mac系统上安装GPU版本PyTorch(CUDA 12.1)

步骤1:检查GPU兼容性

确保您的Mac计算机搭载了支持Metal的GPU。访问苹果官方网站查找GPU的兼容性列表。

步骤2:安装Xcode

从Mac App Store下载并安装Xcode,它包含必要的开发工具和编译器。

步骤3:安装Homebrew

在终端中运行安装Homebrew的命令,以便之后安装其他软件。

步骤4:安装CUDA Toolkit

使用Homebrew安装与您的Mac GPU兼容的CUDA Toolkit(版本12.1):

brew install --cask cuda@11.1

步骤5:创建虚拟环境

使用Anaconda创建一个新的虚拟环境(如pytorch310),并激活它。

步骤6:设置清华源

在虚拟环境中,使用以下命令设置清华源以加速安装过程:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

步骤7:安装PyTorch

使用以下命令在Mac系统上安装GPU版本的PyTorch(CUDA 12.1):

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

步骤8:验证安装是否成功

在Python环境中运行以下代码来验证是否成功安装了GPU版本的PyTorch:

import torch
print(torch.cuda.is_available())

如果输出结果为True,则说明PyTorch成功使用了GPU加速,安装完成。

Linux系统上安装GPU版本PyTorch(CUDA 12.1)

步骤1:检查GPU兼容性

确保您的Linux计算机搭载了兼容的NVIDIA GPU。访问NVIDIA官方网站查找GPU的兼容性列表。

步骤2:安装NVIDIA驱动程序

根据您的Linux发行版,从NVIDIA官方网站或使用包管理器安装适用于您的GPU型号的最新驱动程序。

步骤3:安装CUDA Toolkit

使用以下命令在Linux系统上下载并安装与您的GPU兼容的CUDA Toolkit(版本12.1):

wget https://developer.download.nvidia.com/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
sudo sh cuda_11.1.1_455.32.00_linux.run

步骤4:配置环境变量

将CUDA Toolkit的安装路径添加到系统环境变量中

,以便PyTorch能够正确找到CUDA。

步骤5:创建虚拟环境

使用Anaconda创建一个新的虚拟环境(如pytorch310),并激活它。

步骤6:设置清华源

在虚拟环境中,使用以下命令设置清华源以加速安装过程:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

步骤7:安装PyTorch

使用以下命令在Linux系统上安装GPU版本的PyTorch(CUDA 12.1):

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

步骤8:验证安装是否成功

在Python环境中运行以下代码来验证是否成功安装了GPU版本的PyTorch:

import torch
print(torch.cuda.is_available())

如果输出结果为True,则说明PyTorch成功使用了GPU加速,安装完成。

今日学习总结

在今天的学习中,我们分别介绍了在Windows、Mac和Linux系统上安装和配置GPU版本的PyTorch(CUDA 12.1)。您现在已经掌握了在不同操作系统上安装GPU版本PyTorch的方法,为深度学习项目的开发和研究做好了准备。希望这个教程对您有所帮助!如有任何问题或疑惑,请随时留言,我们将乐意为您解答。感谢您的阅读!

原创声明

=======

作者: [ libin9iOak ]


本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任。

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
4月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
514 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
4月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
6485 3
|
1月前
|
存储 Cloud Native Java
Windows下Minio的安装以及基本使用
MinIO 是一个开源的云原生分布式对象存储系统,兼容亚马逊S3接口,适合存储大容量非结构化数据。本文介绍Windows下MinIO的安装与基本使用:通过以上步骤,您可以在Windows环境中成功安装并使用MinIO。
145 17
|
2月前
|
关系型数据库 MySQL 数据库
【MySQL基础篇】MySQL概述、Windows下载MySQL8.0超详细图文安装教程
在这一章节,主要介绍两个部分,数据库相关概念及MySQL数据库的介绍、下载、安装、启动及连接。接着,详细描述了MySQL 8.0的版本选择与下载,推荐使用社区版(免费)。安装过程包括自定义安装路径、配置环境变量、启动和停止服务、以及客户端连接测试。此外,还提供了在同一台电脑上安装多个MySQL版本的方法及卸载步骤。最后,解释了关系型数据库(RDBMS)的特点,即基于二维表存储数据,使用SQL语言进行操作,格式统一且便于维护。通过具体的结构图展示了MySQL的数据模型,说明了数据库服务器、数据库、表和记录之间的层次关系。
【MySQL基础篇】MySQL概述、Windows下载MySQL8.0超详细图文安装教程
|
2月前
|
安全 关系型数据库 MySQL
Windows Server 安装 MySQL 8.0 详细指南
安装 MySQL 需要谨慎,特别注意安全配置和权限管理。根据实际业务需求调整配置,确保数据库的性能和安全。
233 9
|
2月前
|
机器学习/深度学习 并行计算 异构计算
WINDOWS安装eiseg遇到的问题和解决方法
通过本文的详细步骤和问题解决方法,希望能帮助你顺利在 Windows 系统上安装和运行 EISeg。
126 2
|
3月前
|
网络安全 Windows
Windows server 2012R2系统安装远程桌面服务后无法多用户同时登录是什么原因?
【11月更文挑战第15天】本文介绍了在Windows Server 2012 R2中遇到的多用户无法同时登录远程桌面的问题及其解决方法,包括许可模式限制、组策略配置问题、远程桌面服务配置错误以及网络和防火墙问题四个方面的原因分析及对应的解决方案。
217 4
|
3月前
|
NoSQL Linux PHP
如何在不同操作系统上安装 Redis 服务器,包括 Linux 和 Windows 的具体步骤
本文介绍了如何在不同操作系统上安装 Redis 服务器,包括 Linux 和 Windows 的具体步骤。接着,对比了两种常用的 PHP Redis 客户端扩展:PhpRedis 和 Predis,详细说明了它们的安装方法及优缺点。最后,提供了使用 PhpRedis 和 Predis 在 PHP 中连接 Redis 服务器及进行字符串、列表、集合和哈希等数据类型的基本操作示例。
137 4
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
247 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
4月前
|
数据安全/隐私保护 Windows
安装 Windows Server 2019
安装 Windows Server 2019
126 1