大数据技术之ClickHouse---入门篇---介绍

简介: 大数据技术之ClickHouse---入门篇---介绍

                                                                                 

                       星光下的赶路人star的个人主页

                      知世故而不世故 是善良的成熟


文章目录



1、Clickhouse入门


1.1 什么是Clickhouse


ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库(DBMS),使用 C++

语言编写,主要用于在线分析处理查询(OLAP),能够使用 SQL 查询实时生成分析数据报

告。


1.1.1 Clickhouse的特点


1.1.1.1 列示储存

1、采用列示储存时,数据在磁盘上的组织结构为:

好处是想查某个人所有的属性时,可以通过一次磁盘查找加顺序读取就可以。但是当想

查所有人的年龄时,需要不停的查找,或者全表扫描才行,遍历的很多数据都是不需要的

2、采用列式存储时,数据在磁盘上的组织结构为:

这时想查所有人的年龄只需把年龄那一列拿出来就可以了

3、列示储存的好处

对于列的聚合,计数,求和等统计操作原因优于行式存储。


由于某一列的数据类型都是相同的,针对于数据存储更容易进行数据压缩,每一列

选择更优的数据压缩算法,大大提高了数据的压缩比重。


由于数据压缩比更好,一方面节省了磁盘空间,另一方面对于 cache 也有了更大的

发挥空间。


1.1.1.2 DBMS的功能


几乎覆盖了标准 SQL 的大部分语法,包括 DDL 和 DML,以及配套的各种函数,用户管

理及权限管理,数据的备份与恢复。


1.1.1.3 多样化引擎


ClickHouse 和 MySQL 类似,把表级的存储引擎插件化,根据表的不同需求可以设定不同

的存储引擎。目前包括合并树、日志、接口和其他四大类 20 多种引擎。


1.1.1.4 高吞吐写入能力


ClickHouse 采用类 LSM Tree的结构,数据写入后定期在后台 Compaction。通过类 LSM tree的结构,ClickHouse 在数据导入时全部是顺序 append 写(与Kafka的读写类似),写入后数据段不可更改,在后台compaction 时也是多个段 merge sort 后顺序写回磁盘。顺序写的特性,充分利用了磁盘的吞吐能力,即便在 HDD 上也有着优异的写入性能。

官方公开 benchmark 测试显示能够达到 50MB-200MB/s 的写入吞吐能力,按照每行

100Byte 估算,大约相当于 50W-200W 条/s 的写入速度。


1.1.1.5 数据分区与线程级并行


ClickHouse 将数据划分为多个 partition,每个 partition 再进一步划分为多个 index

granularity(索引粒度),然后通过多个 CPU核心分别处理其中的一部分来实现并行数据处理。在这种设计下,单条 Query 就能利用整机所有 CPU。极致的并行处理能力,极大的降低了查询延时。


所以,ClickHouse 即使对于大量数据的查询也能够化整为零平行处理。但是有一个弊端

就是对于单条查询使用多 cpu,就不利于同时并发多条查询。所以对于高 qps 的查询业务,ClickHouse 并不是强项。


1.1.1.6 性能对比


某网站精华帖,中对几款数据库做了性能对比。

1、单表查询

2、关联查询

结论: ClickHouse 像很多 OLAP 数据库一样,单表查询速度由于关联查询,而且 ClickHouse的两者差距更为明显。

                                                                                     

                                                                        您的支持是我创作的无限动力

                                                                                     

                      希望我能为您的未来尽绵薄之力

                                                                                     

                    如有错误,谢谢指正若有收获,谢谢赞美

相关文章
|
4月前
|
存储 人工智能 大数据
云栖2025|阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
阿里云在云栖大会发布“湖流一体”数智平台,推出DLF-3.0全模态湖仓、实时计算Flink版升级及EMR系列新品,融合实时化、多模态、智能化技术,打造AI时代高效开放的数据底座,赋能企业数字化转型。
981 0
|
6月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
463 4
|
7月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
4月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
6月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
6月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
6月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
|
7月前
|
数据采集 分布式计算 大数据
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
165 1
|
6月前
|
SQL 分布式计算 大数据
SparkSQL 入门指南:小白也能懂的大数据 SQL 处理神器
在大数据处理的领域,SparkSQL 是一种非常强大的工具,它可以让开发人员以 SQL 的方式处理和查询大规模数据集。SparkSQL 集成了 SQL 查询引擎和 Spark 的分布式计算引擎,使得我们可以在分布式环境下执行 SQL 查询,并能利用 Spark 的强大计算能力进行数据分析。
|
7月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合

推荐镜像

更多