Python基础综合案例-数据可视化(折线图)

简介: 今天给大家带来的是Python综合实战开发的数据可视化操作通过python实现对数据的分析、可视化

今天给大家带来的是Python综合实战开发的数据可视化操作

通过python实现对数据的分析、可视化


系统开发环境:


操作系统:win11


Python解释器版本:python3.10


开发工具:Pychram


Python内置模块:pyecharts


1.准备工作


1.1 python环境配置、pychram安装


大家自行查询,有需要我后续会出一个详细教程


1.2 pyecharts模块安装


pip install pyecharts



安装检验:



2.pyecharts 基础学习


2.1 基础折线图


示例代码:


import pyecharts.options as opts
from pyecharts.charts import Line
c = (
    Line()
    .add_xaxis(xaxis_data=["一", "二", "三", "四", "五", "六", "七", "八", "九"])
    .add_yaxis(
        "2 的指数",
        y_axis=[1, 2, 4, 8, 16, 32, 64, 128, 256],
        linestyle_opts=opts.LineStyleOpts(width=2),
    )
    .add_yaxis(
        "3 的指数",
        y_axis=[1, 3, 9, 27, 81, 247, 741, 2223, 6669],
        linestyle_opts=opts.LineStyleOpts(width=2),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Line-对数轴示例"),
        xaxis_opts=opts.AxisOpts(name="x"),
        yaxis_opts=opts.AxisOpts(
            type_="log",
            name="y",
            splitline_opts=opts.SplitLineOpts(is_show=True),
            is_scale=True,
        ),
    )
    .render("line_yaxis_log.html")
)


基本实例:



3.数据处理


通过open打开数据记录的文本,读取信息


处理json格式,转换为python的字典


# 处理数据
f_us = open("D:\美国.txt", "r", encoding="UTF-8")
us_data = f_us.read()   # 美国的全部内容
f_jp = open("D:\日本.txt", "r", encoding="UTF-8")
jp_data = f_jp.read()   # 日本的全部内容
f_in = open("D:\印度.txt", "r", encoding="UTF-8")
in_data = f_in.read()   # 印度的全部内容
# 去掉不合JSON规范的开头
us_data = us_data.replace("jsonp_1629344292311_69436(", "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
in_data = in_data.replace("jsonp_1629350745930_63180(", "")
# 去掉不合JSON规范的结尾
us_data = us_data[:-2]
jp_data = jp_data[:-2]
in_data = in_data[:-2]
# JSON转Python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)


4.生成折线图


# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']
# 获取日期数据,用于x轴,取2020年(到314下标结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]
# 获取确认数据,用于y轴,取2020年(到314下标结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]
# 生成图表
line = Line()       # 构建折线图对象
# 添加x轴数据
line.add_xaxis(us_x_data)   # x轴是公用的,所以使用一个国家的数据即可
# 添加y轴数据
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))     # 添加美国的y轴数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))     # 添加日本的y轴数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))     # 添加印度的y轴数据
# 设置全局选项
line.set_global_opts(
    # 标题设置
    title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%")
)
# 调用render方法,生成图表
line.render()




好的,本次Python实战项目就写到这里,有需要资料源码可私信!

目录
相关文章
|
18天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!
|
29天前
|
机器学习/深度学习 人工智能 数据可视化
使用Python进行数据可视化:探索与实践
在数字时代的浪潮中,数据可视化成为了沟通复杂信息和洞察数据背后故事的重要工具。本文将引导读者通过Python这一强大的编程语言,利用其丰富的库函数,轻松入门并掌握数据可视化的基础技能。我们将从简单的图表创建开始,逐步深入到交互式图表的制作,最终实现复杂数据的动态呈现。无论你是数据分析新手,还是希望提升报告吸引力的专业人士,这篇文章都将是你的理想指南。
39 9
|
25天前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。
|
1月前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
98 19
|
1月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
2月前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
50 7
|
1月前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
40 5
|
2月前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
【10月更文挑战第20天】本文旨在为编程新手提供一个简洁明了的入门指南,通过Python语言实现数据可视化。我们会介绍如何安装必要的库、理解数据结构,并利用这些知识来创建基本图表。文章将用通俗易懂的语言和示例代码,帮助读者快速掌握数据可视化的基础技能。
39 4
|
2月前
|
数据可视化 数据挖掘 定位技术
Python中利用Bokeh创建动态数据可视化
【10月更文挑战第14天】本文介绍了如何使用 Bokeh 库在 Python 中创建动态数据可视化。Bokeh 是一个强大的开源可视化工具,支持交互式图表和大规模数据集的可视化。文章从安装 Bokeh 开始,逐步讲解了如何创建动态折线图,并添加了交互式控件如按钮、滑块和下拉菜单,以实现数据更新频率的调节和颜色选择。通过这些示例,读者可以掌握 Bokeh 的基本用法,进一步探索其丰富功能,创建更具吸引力和实用性的动态数据可视化。
40 0
|
2月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
30 0
下一篇
DataWorks