【机器学习7】特征缩放

简介: 【机器学习7】特征缩放

🍀特征缩放的重要性

特征缩放数据预处理中一个容易被遗忘的步骤。

决策树和随机森林是两种维数不多的不需要特征缩放的机器学习算法,这些算法不受特征缩放的影响。梯度下降优化算法的实现,如果将特征缩放到同一尺度,大多数机器学习和优化算法将会表现得更好。

可以通过一个简单的例子,来说明特征缩放的重要性

假设有两个特征,一个特征的值为在1到10之间,另一个特征的值在1到100000之间。

例如使用Adaline的平方差损失函数,可以说算法主要根据第二个特征优化权重,因为第二个特征主导平方差损失函数值。

另一个例子是k近邻算法,k近邻算法使用欧式距离度量样本间的距离,这样样本间的距离将由第二个特征轴控制。

标准化归一化是两种常见的可以将特征值调整到同一尺度的方法。

🌱归一化

通常,归一化指的是将特征缩放到**[0,1]范围内,是最小最大缩放(min-max scaling)的一种特殊情况。
为了是数据归一化,可以简单地对每一个特征进行
最大最小缩放**。

在下面式子中,使用最大最小缩放方法归一化一个样本的第i个特征:

image.png

image.png

要注意的是,只能训练数据拟合MinMaxScaler类,再用拟合后的参数转换测试数据集或任何新的数据样本,这一点非常重要。

🌱标准化

但对许多机器学习算法,尤其是梯度下降类型的算法,标准化更加实用,因为许多线性模型,如逻辑回归和支持向量机,将权重初始化为0或者接近0的随机数。

标准化将特征列的中心值设置为0,标准差设置为1,这样,特征列的参数与标准正态分布(零均值和单位方差)的参数相同,从而使模型更容易学习权重。

然而,应该强调,标准化不会改变特征列的分布形状,也不会将非正态分布的特征列转换为正态分布。

除了将数据进行平移缩放使其具有零均值和单位方差之外,标准差保留了特征列的其他信息,包括异常值等。

这样,学习算法对异常值的敏感度会降低,而最小最大缩放则将数据放到有限的范围从而丢失了异常值的信息

标准化可以用以下表达式表示:

image.png

image.png

对于由数字0到5组成的简单样本数据集,下面展示标准化和归一化两种特征缩放方法之间的差异:

输入 标准化 最大最小归一化
0.0 -1.46385 0.0
1.0 -0.87831 0.2
2.0 -0.29277 0.4
3.0 0.29277 0.6
4.0 0.87831 0.8
5.0 1.46385 1.0

同样,要注意的是,只能训练数据拟合StandardScaler类,再用拟合后的参数转换测试数据集或任何新的数据样本,这一点非常重要。

🌱更高级的缩放方法

Scikit-Learn还提供了其他更高级的特征缩放方化,例如RobustScaler。如果数据集是包含许多异常值的小数据集,那么RobustScaler尤其有用,并推荐使用。

类似地,如果机器学习算法很容易过拟合该数据集,那么RobustScaler也是一个不错的选择。RobustScaler独立处理数据的每个特征列。具体来讲,RobustScaler调整中位数为0,并根据数据集的第1和第3四分位数对数据进行缩放,以减小极值和异常值的影响。

🌸导入数据集&将数据集划分为训练集和测试集

import pandas as pd
df=pd.read_excel("D:\A_data\Data_wine数据\wine.xlsx")
from sklearn.model_selection import train_test_split
X,y=df.iloc[:,1:].values,df.iloc[:,0].values
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.3,random_state=0,stratify=y)

🌸Sklearn-Learn算法实现归一化

from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler()
X_train_norm=mms.fit_transform(X_train)
X_test_norm=mms.transform(X_test)

7c96403781944a33880ea1a4509f7410.png

🌸Sklearn-Learn算法实现标准化

from sklearn.preprocessing import StandardScaler
stdsc=StandardScaler()
X_train_std=stdsc.fit_transform(X_train)
X_test_std=stdsc.transform(X_test)

d9677024338d499b89c510c92d5abe21.png

目录
打赏
0
0
0
0
5
分享
相关文章
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
86 7
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
176 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
特征平台PAI-FeatureStore的功能列表
本内容介绍了阿里云PAI FeatureStore的功能与使用方法,涵盖离线和在线特征管理、实时特征视图、行为序列特征视图、FeatureStore SDK的多语言支持(如Go、Java、Python)、特征生产简化方案、FeatureDB存储特性(高性能、低成本、及时性)、训练样本导出以及自动化特征工程(如AutoFE)。同时提供了相关文档链接和技术细节,帮助用户高效构建和管理特征工程。适用于推荐系统、模型训练等场景。
42 2
|
23天前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
33 0
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
707 3
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
79 6
人工智能平台PAI产品使用合集之创建特征视图时遇到报错,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
人工智能平台PAI产品使用合集之选择使用Hologres作为在线特征存储,响应延时大概在多久
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
人工智能平台PAI产品使用合集之FeatureStore是否支持推荐场景下的session特征
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
人工智能平台PAI产品使用合集之创建了实时特征视图,里面的数据是通过什么传入的
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

热门文章

最新文章