基于方向编码的模板匹配算法matlab仿真

简介: 基于方向编码的模板匹配算法matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
模板匹配是一种常见的计算机视觉方法,用于在一幅图像中寻找指定的模板。它在目标检测、图像识别、物体跟踪等领域中有广泛的应用。基于方向编码的模板匹配算法是一种改进的模板匹配方法,它通过将图像转化为方向编码的形式,实现了更加高效和准确的模板匹配。本文将详细介绍基于方向编码的模板匹配算法,包括数学原理、实现过程以及应用领域。

     本文选用方向码[7]作为特征来计算出近似的旋转角度和 进行基于像素点的匹配,整个匹配分两步进行。首先计算出 模板和模板覆盖下的子图的方向码图像,在此基础上得到模板和子图的方向码直方图,移动子图方向码直方图,每移动一 次计算二者直方图之间的相似程度,若相似性度量值大于预 先规定的阈值,则子图的左上角像素点就被选为候选的匹配 点,旋转角度依据直方图的移动次数估算得出。然后在每一 个匹配候选点上,根据第 1 步中得出的近似旋转角度旋转模 板后,得到旋转后的模板方向码图像,再计算子图和模板间的 相似程度,最相似的匹配点通过综合第 1 步和第 2 中得到的 相似性度量值得出。第 1 步中估算出的旋转角度排除了对每 一个侯选匹配点按各个可能的方向进行旋转的必要,从而加 快了匹配速度。

   算法的流程图如下图所示:

566490feec5f8f6a23cd95ddfdabbc9b_82780907_202309242140390285686047_Expires=1695563439&Signature=9B3%2Bpr96scNRXibphqHovW67ZOg%3D&domain=8.png

4.部分核心程序

N        = 2;% 选择移动个数
% 读取模板图像和第一幅子图像
Images0  = imread([num2str(17-N),'.jpg']);
% 将子图像转换为双精度类型
Images0  = func_convert(Images0);
Template = imread('match.jpg');
% 将匹配模板图像转换为双精度类型
Template = func_convert(Template);
% 获取匹配模板图像的行数和列数
[R,C]    = size(Template);% 初始化相似性度量值数组
for j = 1:16% 循环进行图像匹配
    j
    %移动
    % 移动子图,选择下一幅子图像
    index    = 16-N+j;
    if index > 16;
       index = index-16;
    end
    Images0  = imread([num2str(index),'.jpg']);
    Images0  = func_convert(Images0);% 将子图像转换为双精度类型
    % 调用 func_Orientation_codes 函数计算匹配模板图像和子图像的方向码直方图特征
    f1 = func_Orientation_codes(Template);% 计算模板图像的方向码直方图特征
    f2 = func_Orientation_codes(Images0);% 计算子图像的方向码直方图特征
    f  = [f1;f2]';
    % 计算相似性度量值
    for i = 1:16
        d(i) = 1-sum(abs(f1(i)-f2(i)))/(max(f1(i),f2(i)));     
    end
    d2(j) = mean(d);
    pause(0.1);
end
% 对于 j=16 的相似性度量值需要放到数组的开头,使得曲线绘制时顺序正确
d3(1)=d2(16);
d3(2:16)=d2(1:15);
% 绘制相似性度量值曲线
figure;
plot(0:15,d3,'b-o')
axis([0,15,0.5,1.2]);
grid on;
title('相似性度量值曲线');
相关文章
|
9天前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
12天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
14天前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
8月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
322 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
8月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
199 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
8月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
258 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
11月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
11月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章