基于方向编码的模板匹配算法matlab仿真

简介: 基于方向编码的模板匹配算法matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
模板匹配是一种常见的计算机视觉方法,用于在一幅图像中寻找指定的模板。它在目标检测、图像识别、物体跟踪等领域中有广泛的应用。基于方向编码的模板匹配算法是一种改进的模板匹配方法,它通过将图像转化为方向编码的形式,实现了更加高效和准确的模板匹配。本文将详细介绍基于方向编码的模板匹配算法,包括数学原理、实现过程以及应用领域。

     本文选用方向码[7]作为特征来计算出近似的旋转角度和 进行基于像素点的匹配,整个匹配分两步进行。首先计算出 模板和模板覆盖下的子图的方向码图像,在此基础上得到模板和子图的方向码直方图,移动子图方向码直方图,每移动一 次计算二者直方图之间的相似程度,若相似性度量值大于预 先规定的阈值,则子图的左上角像素点就被选为候选的匹配 点,旋转角度依据直方图的移动次数估算得出。然后在每一 个匹配候选点上,根据第 1 步中得出的近似旋转角度旋转模 板后,得到旋转后的模板方向码图像,再计算子图和模板间的 相似程度,最相似的匹配点通过综合第 1 步和第 2 中得到的 相似性度量值得出。第 1 步中估算出的旋转角度排除了对每 一个侯选匹配点按各个可能的方向进行旋转的必要,从而加 快了匹配速度。

   算法的流程图如下图所示:

566490feec5f8f6a23cd95ddfdabbc9b_82780907_202309242140390285686047_Expires=1695563439&Signature=9B3%2Bpr96scNRXibphqHovW67ZOg%3D&domain=8.png

4.部分核心程序

N        = 2;% 选择移动个数
% 读取模板图像和第一幅子图像
Images0  = imread([num2str(17-N),'.jpg']);
% 将子图像转换为双精度类型
Images0  = func_convert(Images0);
Template = imread('match.jpg');
% 将匹配模板图像转换为双精度类型
Template = func_convert(Template);
% 获取匹配模板图像的行数和列数
[R,C]    = size(Template);% 初始化相似性度量值数组
for j = 1:16% 循环进行图像匹配
    j
    %移动
    % 移动子图,选择下一幅子图像
    index    = 16-N+j;
    if index > 16;
       index = index-16;
    end
    Images0  = imread([num2str(index),'.jpg']);
    Images0  = func_convert(Images0);% 将子图像转换为双精度类型
    % 调用 func_Orientation_codes 函数计算匹配模板图像和子图像的方向码直方图特征
    f1 = func_Orientation_codes(Template);% 计算模板图像的方向码直方图特征
    f2 = func_Orientation_codes(Images0);% 计算子图像的方向码直方图特征
    f  = [f1;f2]';
    % 计算相似性度量值
    for i = 1:16
        d(i) = 1-sum(abs(f1(i)-f2(i)))/(max(f1(i),f2(i)));     
    end
    d2(j) = mean(d);
    pause(0.1);
end
% 对于 j=16 的相似性度量值需要放到数组的开头,使得曲线绘制时顺序正确
d3(1)=d2(16);
d3(2:16)=d2(1:15);
% 绘制相似性度量值曲线
figure;
plot(0:15,d3,'b-o')
axis([0,15,0.5,1.2]);
grid on;
title('相似性度量值曲线');
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
4天前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68

热门文章

最新文章