机器学习算法之聚类算法

简介: 机器学习算法之聚类算法

1.认识聚类算法

使用不同的聚类准则,产生的聚类结果不同

1.1 应用

1) 用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别

2) 基于位置信息的商业推送,新闻聚类,筛选排序

3) 图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

1.2 概念

聚类算法

一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。

在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。

1.3 与分类算法最大的区别

聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。

2.聚类算法 API 初步使用

2.1 API 介绍

sklearn.cluster.KMeans(n_clusters=8)
"""
参数:
  n_clusters:开始的聚类中心数量
    - 整型,缺省值=8,生成的聚类数,即产生的质心(centroids)数。
方法:
  estimator.fit(x)
  estimator.predict(x)
  estimator.fit_predict(x)
    - 计算聚类中心并预测每个样本属于哪个类别,相当于先调用fit(x),然后再调用predict(x)
"""

2.2 案例

随机创建不同二维数据集作为训练集,并结合 k-means 算法将其聚类,你可以尝试分别聚类不同数量的簇,并观察聚类效果:


聚类参数 n_cluster 传值不同,得到的聚类结果不同更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』


2.2.1 流程分析


2.2.2 代码实现

1) 创建数据集

import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabaz_score
# 创建数据集
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本4个特征,共4个簇,
# 簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]],
                  cluster_std=[0.4, 0.2, 0.2, 0.2],
                  random_state=9)
# 数据集可视化
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()

2) 使用 k-means 进行聚类,并使用 CH 方法评估

y_pred = KMeans(n_clusters=2, random_state=9).fit_predict(X)
# 分别尝试n_cluses=2\3\4,然后查看聚类效果
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
# 用Calinski-Harabasz Index评估的聚类分数
print(calinski_harabaz_score(X, y_pred))

3.聚类算法实现流程

k-means 其实包含两层内容:

K :初始中心点个数(计划聚类数)

means:求中心点到其他数据点距离的平均值

3.1 k-means 聚类步骤

1) 随机设置 K 个特征空间内的点作为初始的聚类中心

2) 对于其他每个点计算到 K 个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别

3) 紧接着,重新计算出每个聚类的新中心点(平均值)

4) 如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

通过下图解释实现流程:


3.2 案例练习

案例:

1) 随机设置 K 个特征空间内的点作为初始的聚类中心(本案例中设置 p1p2

2) 对于其他每个点计算到 K 个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别

3) 重新计算出每个聚类的新中心点(平均值)

4) 如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程「经过判断,需要重复上述步骤,开始新一轮迭代」

5) 当每次迭代结果不变时,认为算法收敛,聚类完成,K-Means 一定会停下,不可能陷入一直选质心的过程。

3.3 小结

流程

1) 事先确定常数 K,常数 K 意味着最终的聚类类别数;

2) 首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,

3) 接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变

4) 最终就确定了每个样本所属的类别以及每个类的质心。

注意:由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-Means 算法的收敛速度比较慢。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

4.模型评估

4.1 误差平方和(SSE \The sum of squares due to error)

举例:(下图中数据-0.2, 0.4, -0.8, 1.3, -0.7, 均为真实值和预测值的差)

k-means 中的应用:

公式各部分内容:

上图中: k=2

1) SSE 图最终的结果,对图松散度的衡量。(eg: SSE(左图) < SSE(右图))

2) SSE 随着聚类迭代,其值会越来越小,直到最后趋于稳定

3) 如果质心的初始值选择不好,SSE 只会达到一个不怎么好的局部最优解

4.2「肘」方法(Elbow method) — K值确定

1) 对于 n 个点的数据集,迭代计算 k from 1 to n,每次聚类完成后计算每个点到其所属的簇中心的距离的平方和;

2) 平方和是会逐渐变小的,直到 k==n 时平方和为0,因为每个点都是它所在的簇中心本身。

3) 在这个平方和变化过程中,会出现一个拐点也即「肘」点,下降率突然变缓时即认为是最佳的 k

在决定什么时候停止训练时,肘形判据同样有效,数据通常有更多的噪音,在增加分类无法带来更多回报时,我们停止增加类别更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

4.3 轮廓系数法(Silhouette Coefficient)

结合了聚类的凝聚度(Cohesion)和分离度(Separation),用于评估聚类的效果:

目的:内部距离最小化,外部距离最大化

计算样本 i 到同簇其他样本的平均距离 aiai 越小样本 i 的簇内不相似度越小,说明样本 i 越应该被聚类到该簇。

计算样本 i 到最近簇 Cj 的所有样本的平均距离 bij,称样本 i 与最近簇 Cj 的不相似度,定义为样本 i 的簇间不相似度:bi =min{bi1, bi2, ..., bik}bi 越大,说明样本 i 越不属于其他簇。

求出所有样本的轮廓系数后再求平均值就得到了平均轮廓系数

平均轮廓系数的取值范围为[-1,1],系数越大,聚类效果越好。

簇内样本的距离越近,簇间样本距离越远。

4.4 CH 系数(Calinski-Harabasz Index)

Calinski-Harabasz:

类别内部数据的协方差越小越好,类别之间的协方差越大越好(换句话说:类别内部数据的距离平方和越小越好,类别之间的距离平方和越大越好),这样的 Calinski-Harabasz 分数 s 会高,分数 s 高则聚类效果越好。



tr矩阵的迹, Bk 为类别之间的协方差矩阵,Wk 为类别内部数据的协方差矩阵;

m 为训练集样本数,k 为类别数。



使用矩阵的迹进行求解的理解:

矩阵的对角线可以表示一个物体的相似性

在机器学习里,主要为了获取数据的特征值,那么就是说,在任何一个矩阵计算出来之后,都可以简单化,只要获取矩阵的迹,就可以表示这一块数据的最重要的特征了,这样就可以把很多无关紧要的数据删除掉,达到简化数据,提高处理速度。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

CH 需要达到的目的:用尽量少的类别聚类尽量多的样本,同时获得较好的聚类效果。

4.5 总结

1) 肘部法:下降率突然变缓时即认为是最佳的 k

2) SC 系数:取值为[-1, 1],其值越大越好

3) CH系数:分数 s 高则聚类效果越好

5.算法优化

5.1 k-means 算法小结

优点:

1) 原理简单(靠近中心点),实现容易

2) 聚类效果中上(依赖K的选择)

3) 空间复杂度 O(N),时间复杂度 O(IKN)

N 为样本点个数,K 为中心点个数,I 为迭代次数

缺点:

1) 对离群点,噪声敏感 (中心点易偏移)

2) 很难发现大小差别很大的簇及进行增量计算

3) 结果不一定是全局最优,只能保证局部最优(与 K 的个数及初值选取有关)

5.2 Canopy 算法配合初始聚类

5.2.1 实现流程



5.2.2 优缺点

优点:

1) Kmeans 对噪声抗干扰较弱,通过 Canopy 对比,将较小的 NumPointCluster 直接去掉有利于抗干扰。

2) Canopy 选择出来的每个 CanopycenterPoint 作为 K 会更精确。

3) 只是针对每个 Canopy 的内做 Kmeans 聚类,减少相似计算的数量。

缺点:

1) 算法中 T1T2 的确定问题 ,依旧可能落入局部最优解更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

5.3 K-means++



kmeans++ 目的,让选择的质心尽可能的分散

如下图中,如果第一个质心选择在圆心,那么最优可能选择到的下一个点在 P(A) 这个区域(根据颜色进行划分)



5.4 二分 k-means

实现流程:

1) 所有点作为一个簇

2) 将该簇一分为二

3) 选择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇。

4) 以此进行下去,直到簇的数目等于用户给定的数目 k为止。



隐含的一个原则

因为聚类的误差平方和能够衡量聚类性能,该值越小表示数据点越接近于他们的质心,聚类效果就越好。所以需要对误差平方和最大的簇进行再一次划分,因为误差平方和越大,表示该簇聚类效果越不好,越有可能是多个簇被当成了一个簇,所以我们首先需要对这个簇进行划分。

二分 K 均值算法可以加速 K-means 算法的执行速度,因为它的相似度计算少了并且不受初始化问题的影响,因为这里不存在随机点的选取,且每一步都保证了误差最小。

5.5 k-medoids(k-中心聚类算法)

K-medoidsK-means 是有区别的,不一样的地方在于中心点的选取

K-means 中,将中心点取为当前 cluster 中所有数据点的平均值,对异常点很敏感!

K-medoids 中,将从当前 cluster 中选取到其他所有(当前 cluster 中的)点的距离之和最小的点作为中心点。



算法流程:

1) 总体 n 个样本点中任意选取 k 个点作为 medoids

2) 按照与 medoids 最近的原则,将剩余的 n-k 个点分配到当前最佳的 medoids 代表的类中

3) 对于第 i 个类中除对应 medoids 点外的所有其他点,按顺序计算当其为新的 medoids 时,代价函数的值,遍历所有可能,选取代价函数最小时对应的点作为新的 medoids

4) 重复2-3的过程,直到所有的 medoids 点不再发生变化或已达到设定的最大迭代次数

5) 产出最终确定的 k 个类

k-medoids对噪声鲁棒性好。

例:当一个 cluster 样本点只有少数几个,如(1,1)(1,2)(2,1)(1000,1000)。其中(1000,1000)是噪声。如果按照 k-means 质心大致会处在(1,1)(1000,1000)中间,这显然不是我们想要的。这时 k-medoids 就可以避免这种情况,他会在(1,1)(1,2)(2,1)(1000,1000)中选出一个样本点使 cluster 的绝对误差最小,计算可知一定会在前三个点中选取。

k-medoids 只能对小样本起作用,样本大,速度就太慢了,当样本多的时候,少数几个噪音对 k-means 的质心影响也没有想象中的那么重,所以 k-means 的应用明显比 k-medoids 多。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

5.6 Kernel k-means(了解)

kernel k-means 实际上,就是将每个样本进行一个投射到高维空间的处理,然后再将处理后的数据使用普通的 k-means 算法思想进行聚类。



5.7 ISODATA(了解)

类别数目随着聚类过程而变化;

对类别数会进行合并,分裂;

「合并」当聚类结果某一类中样本数太少,或两个类间的距离太近时

「分裂」当聚类结果中某一类的类内方差太大,将该类进行分裂

5.8 Mini Batch K-Means(了解)

适合大数据的聚类算法

大数据量是什么量级?通常当样本量大于1万做聚类时,就需要考虑选用Mini Batch K-Means 算法。

Mini Batch KMeans 使用了 Mini Batch(分批处理)的方法对数据点之间的距离进行计算。

Mini Batch 计算过程中不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。由于计算样本量少,所以会相应的减少运行时间,但另一方面抽样也必然会带来准确度的下降。

该算法的迭代步骤有两步:

1) 从数据集中随机抽取一些数据形成小批量,把他们分配给最近的质心

2) 更新质心

Kmeans 相比,数据的更新在每一个小的样本集上。对于每一个小批量,通过计算平均值得到更新质心,并把小批量里的数据分配给该质心,随着迭代次数的增加,这些质心的变化是逐渐减小的,直到质心稳定或者达到指定的迭代次数,停止计算。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

5.9 总结

优化方法 思路
Canopy+kmeans Canopy粗聚类配合kmeans
kmeans++ 距离越远越容易成为新的质心
二分k-means 拆除SSE最大的簇
k-medoids 和kmeans选取中心点的方式不同
kernel kmeans 映射到高维空间
ISODATA 动态聚类
Mini-batch K-Means 大数据集分批聚类
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
117 4
|
16天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
39 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
51 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
42 0
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
140 80
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
6天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。