大数据Hive窗口函数应用实例 2

简介: 大数据Hive窗口函数应用实例

2.2 分析

如果要实现以上需求,首先要统计出每个用户每个月的消费总金额,分组实现集合,但是需要按照用户ID,将该用户这个月之前的所有月份的消费总金额进行累加实现。该需求可以通过两种方案来实现:

方案一:分组统计每个用户每个月的消费金额,然后构建自连接,根据条件分组聚合

方案二:分组统计每个用户每个月的消费金额,然后使用窗口聚合函数实现

2.3 建表

➢ 创建表

--切换数据库
use db_function;
--建表
create table tb_money(
  userid string,
  mth string,
  money int
) row format delimited fields terminated by '\t';

➢ 创建数据:vim /export/data/money.tsv

A 2021-01 5
A 2021-01 15
B 2021-01 5
A 2021-01 8
B 2021-01 25
A 2021-01 5
A 2021-02 4
A 2021-02 6
B 2021-02 10
B 2021-02 5
A 2021-03 7
B 2021-03 9
A 2021-03 11
B 2021-03 6

➢加载数据

load data local inpath ‘/export/data/money.tsv’ into table tb_money;

➢ 查询数据

select * from tb_money;

➢ 统计得到每个用户每个月的消费总金额

create table tb_money_mtn as
select
  userid,
  mth,
  sum(money) as m_money
from tb_money
group by userid,mth;

2.4 方案一:自连接分组聚合

➢ 基于每个用户每个月的消费总金额进行自连接

select
  a.userid as auserid,
  a.mth as amth,
  a.m_money as am_money,
  b.userid as buserid,
  b.mth as bmth,
  b.m_money as bm_money
from tb_money_mtn a join tb_money_mtn b on a.userid = b.userid;

➢ 将每个月之前月份的数据过滤出来

select
  a.userid as auserid,
  a.mth as amth,
  a.m_money as am_money,
  b.userid as buserid,
  b.mth as bmth,
  b.m_money as bm_money
from tb_money_mtn a join tb_money_mtn b on a.userid = b.userid
where a.mth >= b.mth;

➢ 对每个用户每个月的金额进行分组,聚合之前月份的消费金额

select
  a.userid as auserid,
  a.mth as amth,
  a.m_money as am_money,
  sum(b.m_money) as t_money
from tb_money_mtn a join tb_money_mtn b on a.userid = b.userid
where a.mth >= b.mth
group by a.userid,a.mth,a.m_money;

2.5 方案二:窗口函数实现

➢ 窗口函数sum

➢ 功能:用于实现基于窗口的数据求和

➢ 语法:sum(colName) over (partition by col order by col)

➢colName:对某一列的值进行求和

➢分析

基于每个用户每个月的消费金额,可以通过窗口函数对用户进行分区,按照月份排序,然后基于聚合窗口,从每个分区的第一行累加到当前和,即可得到累计消费金额。

➢ 统计每个用户每个月消费金额及累计总金额

select
    userid,
    mth,
    m_money,
    sum(m_money) over (partition by userid order by mth) as t_money
from tb_money_mtn;

3 分组TopN

3.1 需求

工作中经常需要实现TopN的需求,例如热门商品Top10、热门话题Top20、热门搜索Top10、地区用户Top10等等,TopN是大数据业务分析中最常见的需求。


普通的TopN只要基于数据进行排序,然后基于排序后的结果取前N个即可,相对简单,但是在TopN中有一种特殊的TopN计算,叫做分组TopN。

分组TopN指的是基于数据进行分组,从每个组内取TopN,不再基于全局取TopN。如果要实现分组取TopN就相对麻烦。

例如:现在有一份数据如下,记录这所有员工的信息:

如果现在有一个需求:查询每个部门薪资最高的员工的薪水,这个可以直接基于表中数据分组查询得到

select deptno,max(salary) from tb_emp group by deptno;

但是如果现在需求修改为:统计查询每个部门薪资最高的前两名员工的薪水,这时候应该如何实现呢?

3.2 分析

根据上述需求,这种情况下是无法根据group by分组聚合实现的,因为分组聚合只能实现返回一条聚合的结果,但是需求中需要每个部门返回薪资最高的前两名,有两条结果,这时候就需要用到窗口函数中的分区来实现了。

3.3 建表

➢ 创建表

--切换数据库
use db_function;
--建表
create table tb_emp(
   empno string,
   ename string,
   job string,
   managerid string,
   hiredate string,
   salary double,
   bonus double,
   deptno string
) row format delimited fields terminated by '\t';

➢创建数据:vim /export/data/emp.txt

7369  SMITH CLERK 7902  1980-12-17  800.00    20
7499  ALLEN SALESMAN  7698  1981-2-20 1600.00 300.00  30
7521  WARD  SALESMAN  7698  1981-2-22 1250.00 500.00  30
7566  JONES MANAGER 7839  1981-4-2  2975.00   20
7654  MARTIN  SALESMAN  7698  1981-9-28 1250.00 1400.00 30
7698  BLAKE MANAGER 7839  1981-5-1  2850.00   30
7782  CLARK MANAGER 7839  1981-6-9  2450.00   10
7788  SCOTT ANALYST 7566  1987-4-19 3000.00   20
7839  KING  PRESIDENT   1981-11-17  5000.00   10
7844  TURNER  SALESMAN  7698  1981-9-8  1500.00 0.00  30
7876  ADAMS CLERK 7788  1987-5-23 1100.00   20
7900  JAMES CLERK 7698  1981-12-3 950.00    30
7902  FORD  ANALYST 7566  1981-12-3 3000.00   20
7934  MILLER  CLERK 7782  1982-1-23 1300.00   10

➢ 加载数据

load data local inpath ‘/export/data/emp.txt’ into table tb_emp;

➢查询数据

select empno,ename,salary,deptno from tb_emp;


3.4 实现

➢ TopN函数:row_number、rank、dense_rank

➢ row_number:对每个分区的数据进行编号,如果值相同,继续编号

➢ rank:对每个分区的数据进行编号,如果值相同,编号相同,但留下空位

➢ dense_rank:对每个分区的数据进行编号,如果值相同,编号相同,不留下空位

➢ 基于row_number实现,按照部门分区,每个部门内部按照薪水降序排序

select
       empno,
       ename,
       salary,
       deptno,
       row_number() over (partition by deptno order by salary desc) as rn
from tb_emp;

➢ 过滤每个部门的薪资最高的前两名

with t1 as (
select
       empno,
       ename,
       salary,
       deptno,
       row_number() over (partition by deptno order by salary desc) as rn
from tb_emp )
select * from t1 where rn < 3;

f66cfc07a1e24d3e99ab0bb766d57a74.png

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
6月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
本文探讨Java大数据可视化在城市空气质量监测与污染溯源中的创新应用,结合多源数据采集、实时分析与GIS技术,助力环保决策,提升城市空气质量管理水平。
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
|
6月前
|
存储 监控 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业生产运营监控与决策支持中的应用(228)
本文探讨了基于 Java 的大数据可视化技术在企业生产运营监控与决策支持中的关键应用。面对数据爆炸、信息孤岛和实时性不足等挑战,Java 通过高效数据采集、清洗与可视化引擎,助力企业构建实时监控与智能决策系统,显著提升运营效率与竞争力。
|
6月前
|
Java 大数据 数据处理
Java 大视界 -- 基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战(222)
本文探讨了基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战。文章分析了传统制造模式的局限性,介绍了工业互联网带来的机遇,并结合实际案例展示了 Java 在多源数据采集、实时处理及设备协同优化中的关键技术应用。同时,也深入讨论了数据安全、技术架构等挑战及应对策略。
|
6月前
|
数据采集 搜索推荐 Java
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
6月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
6月前
|
机器学习/深度学习 安全 Java
Java 大视界 -- Java 大数据在智能金融反洗钱监测与交易异常分析中的应用(224)
本文探讨 Java 大数据在智能金融反洗钱监测与交易异常分析中的应用,介绍其在数据处理、机器学习建模、实战案例及安全隐私等方面的技术方案与挑战,展现 Java 在金融风控中的强大能力。
|
6月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
6月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。