本地生活技术雷达——生成式AI(Generative AI)在阿里本地生活的应用与思考

简介: 本地生活技术雷达是由本地生活技术中心战略管理&PMO团队开展的,定期扫描和评估新兴技术的战略研究工作。目的是对技术趋势进行前瞻性预判,提出新技术布局建议,在技术驱动业务创新和业务增长、践行社会责任等方面有一些实质性探索。本篇尝试探讨1)理解AI范式——从分析型(Analytical AI)到生成式(Generative AI)的拐点在2022年,其对人类社会以及商业模式的长期影响;2)生成式AI(文生文、文生图、图生图等)在本地业务目前场景的应用和未来的方向。欢迎技术、产品、运营、战略、管理层、国内国际等各种视角的指点和碰撞!

一、AIGC的重要发展拐点和历史进程



1.从Analytical AI到Generative AI的转移

     此前的分析型AIAnalytical AI)是根据已有数据进行分析、判断、预测,典型应用为内容的智能推荐(短视频)、自动驾驶等;生成式AIGenerative AI)更强调学习归纳后进行演绎创造,生成全新的内容。



2.算法迭代的理解

     在预训练大模型的基础上,AI生成能力的落地体现2022年主要在两个维度:1Text-to-Image生成模型的代际性迁移所带来的高质量、快速、多样性三者兼得的大规模应用落地;2)开放域生成式对话工具(Text-to-TextTransformer-basedChat-GPT的提出。

从第一个Text-to-Image生成模型的演变来看

image.png

从第二个Text-to-Text Transformer-basedChatGPT的提出来看

image.png

3.实际行业应用

对行业格局的理解:尽管AIGC需要巨量算力、资金和研发人才、调参人员,Generative AI本质是一个"巨头的生意",目前成立的大量创业公司会被收购或者消失,但行业的生态位和社会化分工依然给中小玩家和垂直领域提供了机会。

image.png



尽管不同领域的成熟度不一样,从应用历史进程预测来看,Gartner预测从文字生成文字的能力到2025年水平高于人类平均水平。

image.png

具体代表性公司如下:这里面的成熟度每天日新月异,公司的代表性产品也在不断迭代和拓展,欢迎大佬们随时Update

image.png

具体来举两个市场上的创业公司生动的例子,玩起来~

(别着急,本地生成能力例子也有,在后面,请一直看下去O(_)O~!)

一个生成文案

image.png



一个生成图片

image.png



最近Microsoft Bing的发布会上结合ChatGPT后新的搜索引擎的对复杂问题的解决/生成能力

image.png

4.生成式AI对行业和工作方式影响的预判

中短期,text-texttext-imagetext-videoimage-imageimage-video等技术还在不断成熟,主要对内容相关行业有较大影响,对电商等运营驱动行业,在营销、商品、客服等环节有局部影响

中长期,在text-x单维度能力成熟后,将演变为以业务\运营目标为导向的多维度组合生成能力,改变软件交互方式,在线上化-实时化-智能化发展过程中,智能化阶段从目前的分析\决策智能化演进为分析\决策智能化+生成智能化(多维度内容组成的场景),对以运营为主的互联网公司会产生综合影响。以营销活动会场搭建为例,将基于营销活动目标、活动主题等,智能化生成包含textimagevideo等内容形态的营销会场等。

(这里有共鸣的小伙伴欢迎来举例!)

image.png



在落地先后的判断上,预计设计师比程序员更早受到实际影响,一是模型技术成熟度,二是两者对生成内容的容错率不同,三是设计和创作行业已验证所需成本因AIGC大幅降低。可参考A16Z

各位技术大神、设计大神可能都有一些使用这类AIGC工具的反馈,欢迎大家来聊自己的体验和判断!你的反馈可能是下一个深入研究的入口~



5. 行业性挑战问题

image.png



二、阿里集团在生成式AI的相关能力布局

image.png



三、生成式AI在本地生活的应用场景及技术布局建议



中短期2年内投入资源优先级思考

这里Highlight1AIGC在商品信息质量管理中降本提效的作用,以及2)作为整体AI发展的重要基建:垂直领域的多模态知识图谱。image.png





具体看Text-to-text场景

image.png



具体看Text-to-image场景

image.png





具体看Image-to-Image场景

image.png



具体看Text-to-text生成对话能力

image.png



具体看多模态知识图谱

image.png





四、参考学习

在这里冒昧放一张淘宝META技术在AIGC方向的探索,作为我们学习和参照的落地方~

image.png



五、思考和未来探索

image.png

Last but not the least

 

 





 

相关文章
|
4月前
|
人工智能 数据安全/隐私保护
如何识别AI生成内容?探秘“AI指纹”检测技术
如何识别AI生成内容?探秘“AI指纹”检测技术
573 119
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI检测技术:如何识别机器生成的“数字指纹”?
AI检测技术:如何识别机器生成的“数字指纹”?
324 115
|
4月前
|
人工智能 自然语言处理 算法
揭秘AI文本:当前主流检测技术与挑战
揭秘AI文本:当前主流检测技术与挑战
721 115
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
如何准确检测AI生成内容?这三大技术是关键
如何准确检测AI生成内容?这三大技术是关键
858 116
|
4月前
|
机器学习/深度学习 人工智能 算法
AI生成内容的“指纹”与检测技术初探
AI生成内容的“指纹”与检测技术初探
359 9
|
4月前
|
人工智能 自然语言处理
如何识别AI生成内容?这几点技术指标是关键
如何识别AI生成内容?这几点技术指标是关键
971 2
|
4月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
1067 51
|
5月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
1176 57
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
593 30

热门文章

最新文章