港大阿里“视觉AI任意门”,一键向场景中无缝传送物体

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 本文主要展示了阿里和港大的AI版「任意门」,实现零样本的图像嵌入。

点两下鼠标,就能把物体无缝「传送」到照片场景中,光线角度和透视也能自动适应。

阿里和港大的这个AI版「任意门」,实现了零样本的图像嵌入。

有了它,网购衣服也可以直接看上身效果了。

因为功能和任意门十分相似,所以研发团队给它起的名字就叫AnyDoor。

AnyDoor一次能够传送多个物体。

不仅如此,它还能移动图像里的已有物品。

有网友看了之后赞叹到,或许接下来就会进化到(把物体传入到)视频了。

零样本生成逼真效果

相对于已有的类似模型,AnyDoor具有零样本操作能力,无需针对具体物品调整模型。

除了这些需要进行参数调节的模型之外,AnyDoor相对于其他Reference类模型也更为准确。

实际上,其他的Reference类模型只能做到保持语义一致性。

通俗地说,如果要传送的物体是一只猫,其他模型只能保证结果中也有一只猫,但相似度无法保证。

我们不妨把AnyDoor的效果放大看看,是不是看不出什么破绽?

用户评价的结果也证实,AnyDoor在质量和准确度方面表现均优于现有模型(满分4分)。

而对于已有图像中物体的移动、换位,甚至改变姿态,AnyDoor也能出色完成。

那么,AnyDoor是如何实现这些功能的呢?

工作原理

要想实现物体的传送,首先就要对其进行提取。

不过在将包含目标物体的图像送入提取器之前,AnyDoor首先会对其进行背景消除。

然后,AnyDoor会进行自监督式的物体提取并转换成token。

这一步使用的编码器是以目前最好的自监督模型DINO-V2为基础设计的。

为了适应角度和光线的变化,除了提取物品的整体特征,还需要额外提取细节信息。

这一步中,为了避免过度约束,团队设计了一种用高频图表示特征信息的方式。

将目标图像与Sobel算子等高通滤波器进行卷积,可以得到含高频详情的图像。

同时,AnyDoor利用Hadamard对图像中的RGB色彩信息进行提取。

结合这些信息和过滤边缘信息的遮罩,得到了只含高频细节的HF-Map。

最后一步就是将这些信息进行注入。

利用获取到的token,AnyDoor通过文生图模型对图像进行合成。

具体来说,AnyDoor使用的是带有ControlNet的Stable Diffusion。

AnyDoor的工作流程大致就是这样。而在训练方面,也有一些特殊的策略。

△AnyDoor使用的训练数据集

尽管AnyDoor针对的是静态图像,但有一部分用于训练的数据是从视频当中提取出来的。

对于同一物体,视频当中可以提取出包含不同背景的图像。

将物体与背景分离后标注配对,就形成了AnyDoor的训练数据。

不过虽然视频数据有利于学习,但还存在质量问题需要解决。

于是团队设计了自适应时间步采样策略,在不同时刻分别采集变化和细节信息。

通过消融实验结果可以看出,随着这些策略的加入,CLIP和DINO评分均逐渐升高。

团队简介

论文的第一作者是香港大学博士生陈汐(Xi Chen),他曾经是阿里巴巴集团算法工程师。

陈汐的导师Hengshuang Zhao是本文的通讯作者,研究领域包括机器视觉、机器学习等。

此外,阿里方面还有来自达摩院、菜鸟集团的研究人员也参与了这一项目。

论文地址:

https://arxiv.org/abs/2307.09481


本文转发自量子位公众号。

相关文章
|
17天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
654 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
29天前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
816 58
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
17天前
|
人工智能 数据处理 云栖大会
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
164 9
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
175 10
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
|
6天前
|
传感器 人工智能 机器人
科技云报到:找到真场景,抓住真需求,这样的具身智能才是好AI
科技云报到:找到真场景,抓住真需求,这样的具身智能才是好AI
|
23天前
|
传感器 人工智能 监控
建筑施工安全 “智能防线”!AI 施工监测系统,全方位破解多场景隐患难题
AI施工监测系统通过多场景识别、智能联动与数据迭代,实现材料堆放、安全通道、用电、大型设备及人员行为的全场景智能监管。实时预警隐患,自动推送告警,联动现场处置,推动建筑安全从“人工巡查”迈向“主动防控”,全面提升施工安全管理水平。
166 15
|
29天前
|
人工智能
四大公益场景,20万奖金!AI开源公益创新挑战赛邀你一起「小有可为」
四大公益场景,20万奖金!AI开源公益创新挑战赛邀你一起「小有可为」
112 8
|
29天前
|
人工智能 边缘计算 搜索推荐
AI产品测试学习路径全解析:从业务场景到代码实践
本文深入解析AI测试的核心技能与学习路径,涵盖业务理解、模型指标计算与性能测试三大阶段,助力掌握分类、推荐系统、计算机视觉等多场景测试方法,提升AI产品质量保障能力。
|
机器学习/深度学习 新零售 人工智能
阿里云高校计划视觉AI五天训练营 Day 1——视觉应用探索
在这个人工智能已经普及的时代,各行各业都充斥着AI的身影。大部分人认为人工智能起点高,入门难,想要使用AI服务又无法独立完成编写,开发者可以通过阿里云视觉平台提供的通用且标准化的接入方式,快速接入及使用阿里云视觉平台提供的包括人脸人体、文字识别、商品理解、内容安全、图像识别、图像生产、分割抠图、视觉搜索、目标检测、图像分析处理、视频理解、视频生产、视频分割13个类目多个API能力,为其提供高易用、普惠的视觉API服务,帮助企业快速建立视觉智能技术的应用能力的综合性视觉AI能力平台。
1404 0
阿里云高校计划视觉AI五天训练营 Day 1——视觉应用探索
|
人工智能 前端开发 算法
视觉AI五天训练营教程 Day 3
简介: 在这个人工智能已经普及的时代,各行各业都充斥着AI的身影。大部分人认为人工智能起点高,入门难,想要使用AI服务又无法独立完成编写,阿里云视觉平台是基于阿里巴巴视觉智能技术实践经验,面向视觉智能技术企业和开发商(含开发者),为其提供高易用、普惠的视觉API服务,帮助企业快速建立视觉智能技术的应用能力的综合性视觉AI能力平台。开发者可以通过阿里云视觉平台提供的通用且标准化的接入方式,快速接入及使用阿里云视觉平台提供的包括人脸人体、文字识别、商品理解、内容安全、图像识别、图像生产、分割抠图、视觉搜索、目标检测、图像分析处理、视频理解、视频生产、视频分割13个类目多个API能力。本期直播将带你
645 0
视觉AI五天训练营教程 Day 3

热门文章

最新文章