CRM数据质量怎么控?来,全球500强的经验分享给你!

简介: CRM数据质量怎么控?来,全球500强的经验分享给你!

前言

刚夸完梅森同学,他就过来烦我了,让我回想当年在 arvato 的时候遇到的 CRM 数据质量问题,他要写方案。

这人都有!各位,你见过离职7、8年后还来找你事儿的同事么?不过看在钱的份上,我就不跟他计较了。今天就聊聊 CRM 数据质量管控的事。

场景

arvato是全球顶尖的CallCenter。我当年在 arvato 负责奔驰项目的数据管理工作,跟梅森是搭档。他的脑子里全是关系,我脑子里全是数据。所以他是输出,负责砍人;我是肉盾,负责硬抗、背锅,合作一直很融洽。

奔驰项目实际上就是一个呼叫中心项目。主要业务是帮戴姆勒中国接听客户咨询、投诉电话,同时也打迎新、活动邀约、回访电话。

所以场景很简单,就是一帮客服人员接打电话。可能你会说,这么简单的事情,流程清晰、逻辑简单,哪能有什么数据质量问题啊?

你要是这么理解,那指定是对数据质量有啥莫名其妙的自信啊。因为数据质量问题最大的来源,正是人!

呼叫中心所有的数据运转大概是这个流程:

跟其他地方一样,没啥大不了的。但是有一个非常恐怖的地方,就是大量数据在业务系统中产生,并且不断循环。

因为 Call Center 是一个劳动力密集型产业,用人话说就是全靠人堆,接打电话后要录入数据,下次打电话还得靠这次的记录才能继续啊。

而且,为了控制成本、社会地位、工作性质等问题, Call Center 很难招到高学历的员工。而且这个工作,基本上就是不断地机械性的重复、再重复,想不错都难啊!

所以就会导致一个巨大的问题,相比起互联网的日志数据,CRM的数据生产,高度依赖于这些高强度工作的人。那数据质量自然就高不起来了。

问题脉络

所以,当时的我,绝大多数时间都是在跟人高频沟通,找问题然后去优化、解决。刚入职的时候,这些问题跟夏夜田间的蛙鸣一样,那是此起彼伏、连绵不绝,闹的你是左右不是,烦得很!

不过还好,哥们也是练过的,很快就捋顺了。咋捋?方法很多,鱼骨图的“人机料法环也行,按数据“采集、存储、加工、处理、展示”这样的处理流程也行。我当时是综合了一下,大致梳理出这些大的问题类型:

千头万绪总得有一个线头,上面的图就是线头了。但是这么多线头呢,先从哪里入手?

我现在跟你讲的时候当然是有系统、有条理的讲啊,因为我已经没有那种身在局中的紧迫感了。但是在当时,至少是前半年,优化的优先条件是紧急程度,哪里起火了就往哪里扑,俗称救火队长。

抓源头

为了方便描述,咱先从三个源头抓起:系统对接的、人工导入的、人工录入的。

其实系统对接的数据问题还好,都是偶发。但是一发就是大批量的出错,而且还不易发现,往往造成的影响比较大。所以我安排一个兄弟对所有的接口进行了梳理,然后扔给IT部门一堆需求,要求增加一个数据校验逻辑,不符合直接发邮件人工检查。

然后再对付人工导入的数据。Call Center 也承接 Leads (销售机会)跟进的工作,所以市场部会不停的做很多市场活动,收集过来的客户数据都会给我们,进行外呼。

这些数据质量参差不齐,太痛苦了。有些都是车展上弄一张纸,让用户填,然后再人工处理的。我们拿到手之后,先在 excel 里各种操作,规整了之后再复制到数据库里,再走存储过程进到 leads 库里的。

这样效率低不说,数据质量还难控制。我给大家培训了2天Kettle,让他们用工具,建立数据校验、自动映射、自动校正、自动修复、自动填补、错误数据输出等一系列数据质量控制的手段,不仅提升了效率,而且还能极大的提升数据质量。

最后呢,就是去啃最难啃的人工录入部分了。讲真,这些客服同学真的很辛苦。因为是外企,服务的客户也是高端客户,所有的流程都必须严格遵守。

比如打电话的时候要按顺序问问题,不能打嗑呗儿、说错字;打完电话还得把刚才通话的所有内容都记录下来,不能遗漏和有错误,任何一件事情做错了,都是要扣钱的。

解决这些问题基本上没啥好办法,但是有一个原则:不相信人,只相信系统。我会去拉数据,看看那个字段错误率高,然后去找对应的页面,看是操作不舒服、容易犯错,或者说本身系统就有问题,然后提系统优化需求。

也有可能是员工培训不到位,如果是大面积的,那就是培训有遗漏,有过是个例,那就是员工本身的问题,重点加强即可。

对于所有人工录入的数据,同样都要开启数据质量监控,随时关注、纠正。

我们总结一下,数据来源主要是手工导入的原始数据、系统对接的数据交换和手工录入的数据。这三方面的问题罗列如上,解决方案说千道万,其实就一条:相信机器。

数据源这边控住了,后面该咋弄?

管系统

哈哈,你是不是认为管系统就是IT系统?没那么简单哦!IT系统是系统,但是组织系统是更重要的系统。

换句话说,哪怕现在没有任何IT系统,所有事情都靠手账记录,也是可以做,并且是非常有必要做数据质量管控的。

我见过很多公司,CRM建设的很落后,都是人手一个excel,照着客户资料拨电话。这个时候就得靠组织、机制去管控了。否则人员流失,客户也就流失了。

不过,当年在arvato,CRM建设的还是非常完善的。机制这边就是狠抓培训。

因为前面已经提过人为操作导致数据质量问题及解决方案,所以在机制这边主要的问题其实还是在于各种漏洞的填补。

比如系统更新后,没告诉客服,导致操作错误;客服录入数据后,没有检查;部分未知错误原因穿透了系统校验机制;报表发出去之前没有认真检查等等。

在IT系统层面呢,那问题就更多了。数据交换、处理等各个环节缺乏验证,业务需求总是变化,页面设置不友好、不合理、系统本身的缺陷、N个渠道的数据没打通等等。

怎么解决呢?一点点啃吧。反正线头给你扯出来了,顺着线头慢慢捋,肯定能捋干净。

我们总结一下,系统层面,分组织系统和IT系统。虽然说问题很多,但是核心点其实就是增加流程,让机器多去检查,人工定期复查。

扣细节

流程也梳理了,系统也管控了,那剩下的就是零碎的事情了。这个没办法,全是人的事儿,也就是非常零碎、琐碎的细节。必须得俯下身子,沉到细节里,逐一解决。

人为错误上面已经简单说了一下,但是除了培训、系统、规范等流程和系统层的原因,其实还有客服人员本身的一些问题。但是这些可能不是培训、系统能解决的,比如对方的口音、通话质量、分类界定模糊等等。这些只能慢慢改善,很多不能根治。

另外,在数据汇总层面,也有很多各种细节问题,这个就是老生常谈了。什么统计口径不统一、指标二义性、指标历史版本多、业务逻辑复杂、人为bug等等。

这些问题随便拿一个出来都得单开一篇说。这里就不展开了

毕竟已经过了6、7、8、9年了,很多细节也已经记不太清了,资料也都没有了。但是仍然怀念在arvato的日子,以及各位好朋友,非常想念你们,爱你们哟~~@猫姐、@Lily、@Maple、@Masson、@Lant、@Eric、@Vivi、@Vivian、@All of my friends,比心

结语

感谢阅读,本次分享的内容就结束了。本公众号目前保持日更3000字,为你提供优秀的数据领域的分享。

相关文章
|
3月前
|
数据采集 搜索推荐 数据挖掘
不同的企业如何量身制定数据治理体系
数据治理是一个持续优化的过程。企业需要不断评估数据治理效果并进行调整和完善。可以定期召开数据治理会议,总结数据治理工作的经验和教训,并制定相应的改进措施。同时,企业可以引入先进的数据治理技术和工具,提高数据治理的效率和效果。
|
8月前
|
监控 供应链 数据挖掘
ERP系统在中小企业的实施案例分析
ERP系统在中小企业的实施案例分析
296 1
|
运维
《云上大型赛事保障白皮书》——第七章 保障阵型与流程管理——7.2 云上大型赛事流程管理——7.2.2 北京冬奥应急流转流程
《云上大型赛事保障白皮书》——第七章 保障阵型与流程管理——7.2 云上大型赛事流程管理——7.2.2 北京冬奥应急流转流程
《云上大型赛事保障白皮书》——第七章 保障阵型与流程管理——7.2 云上大型赛事流程管理——7.2.1 基于业务影响的流程分级(上)
《云上大型赛事保障白皮书》——第七章 保障阵型与流程管理——7.2 云上大型赛事流程管理——7.2.1 基于业务影响的流程分级(上)
113 0
|
运维 数据挖掘
《云上大型赛事保障白皮书》——第七章 保障阵型与流程管理——7.2 云上大型赛事流程管理——7.2.1 基于业务影响的流程分级(下)
《云上大型赛事保障白皮书》——第七章 保障阵型与流程管理——7.2 云上大型赛事流程管理——7.2.1 基于业务影响的流程分级(下)
143 0
|
监控
政法重点人员联防联控管理平台建设,智慧城市治安防控系统开发
政法重点人员联防联控管理平台实现了把基层人员纳入进来进行管理,整合全市现有的各领域、各部门、各条线的网格员队伍,使基层社会治理从粗放式﹑单一式向精细化、数据化转变,通过多网融合、一平台通管、“街乡吹哨,部门报到”、接诉即办、主动出击,从而推进社会治理创新、健全保障机制实现社会长效治理、提高管理和服务水平、打造更加和谐有序的小康社会。
215 1
|
数据可视化 大数据
重点人员管控系统开发,公安大数据可视化平台建设
重点人员管控系统的数据平台,是基于综平台、大情报系统、数据资源中心的,通过深度挖掘这些可靠信息,利用系统进行分析研判,达到对重点人员的管控。
376 0
|
人工智能 监控 大数据
重点关注人员联防联控平台建设,政法委治安防控系统开发
重点关注人员联防联控平台是平安城市的重要措施和力量,其重心是维护社会稳定、化解基层矛盾、防控违法犯罪,应对大规模公共危机和安保活动
211 0
|
监控 大数据 数据管理
政法大数据人员管控系统开发,重点关注人员联防联控平台建设
政法大数据人员管控系统,是以政法委为统筹核心,横向打通公安、检察、法院、司法、监狱 等部门,纵向贯通中央、省、市、县、乡五个层级,综合运用现代科技成果,统一管控操作平台、统一执行标准、 统一协调联动、统一管理监督,实现对九类重点人员及流动人口进行全流程、全覆盖、全天候数字化管理。
329 0
|
搜索推荐 大数据
风剑分享 | 只有数据最懂公司的痛点,指导企业决策走向
在2018中国大数据高峰论坛上,数澜科技CEO风剑分享了对数据资产化的理解、大数据平台的建设、大数据落地过程中的挑战,以及数据应用在未来的机遇与挑战。具体全文摘录如下: 一、什么是数据资产化 “数据资产化是数澜一直秉持的概念并持续在做的事情”。