【GRU回归预测】基于门控循环单元GRU实现数据多维输入单输出预测附matlab代码

简介: 【GRU回归预测】基于门控循环单元GRU实现数据多维输入单输出预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着深度学习的快速发展,循环神经网络(RNN)成为了处理序列数据的重要工具。而门控循环单元(Gated Recurrent Unit,GRU)作为一种改进的RNN结构,具有较长的记忆能力和更好的训练效果,成为了研究者们研究和应用的热点之一。在本文中,我们将探讨如何使用GRU实现数据的多维输入单输出预测。

首先,让我们回顾一下GRU的基本原理。GRU是一种带有门控机制的循环神经网络,它通过门控单元来控制信息的流动和记忆的更新。GRU的核心结构包括更新门(Update Gate)和重置门(Reset Gate),它们通过学习得到的权重来控制输入和隐藏状态之间的交互。更新门用于控制隐藏状态的更新,而重置门则用于控制隐藏状态的重置。通过这种门控机制,GRU可以更好地处理长期依赖和梯度消失的问题,提高了模型的性能。

在数据多维输入单输出预测任务中,我们的目标是根据输入的多维数据来预测一个输出值。这种任务在很多领域都有广泛的应用,比如股票价格预测、天气预测等。使用GRU进行预测的一种常见方法是将输入数据转换为时间序列数据,然后将其作为GRU的输入。例如,我们可以将每个维度的数据按时间顺序排列,形成一个时间序列,然后将该序列输入到GRU模型中进行训练和预测。

在实际应用中,我们通常需要对输入数据进行预处理和特征提取。预处理的步骤包括数据清洗、归一化等,以确保数据的质量和可用性。特征提取的步骤可以通过各种方法实现,比如使用主成分分析(PCA)或者卷积神经网络(CNN)等。这些步骤的目的是提取输入数据中的有用信息,以便更好地进行预测。

在训练过程中,我们需要将数据集划分为训练集和测试集。训练集用于训练模型的参数,而测试集用于评估模型的性能。为了提高模型的泛化能力,我们还可以使用交叉验证等方法进行模型选择和调参。

在预测过程中,我们可以使用已经训练好的GRU模型对新的数据进行预测。预测的结果可以用于分析和决策,比如根据股票价格的预测结果进行交易策略的制定。

总结来说,基于门控循环单元GRU的数据多维输入单输出预测方法具有较好的性能和灵活性。通过对输入数据的预处理和特征提取,以及合理的训练和预测过程,我们可以利用GRU模型来实现准确和可靠的预测。未来,我们可以进一步研究和改进GRU模型,以适应更复杂和多样化的预测任务,推动深度学习在实际应用中的发展和应用。

⛄ 核心代码

function [ pxx,fpow,powerFeatures ] = powerSort( inSignal,fs )%powerSort  求功率谱密度以及各个节律频带的信号功率%   inSignal  输入信号%   fs  采样频率%   pxx  功率谱密度%   fpow  频率向量%   powerFeatures  各节律频带的信号功率组成的数组    %使用 welch 法来提取功率谱密度    [pxx, fpow] = pwelch(inSignal, [], [], [], fs);    %对去基线去工频的信号求功率谱密度    %计算各个节律频带的信号平均功率    power_delta = bandpower(pxx, fpow, [0.5, 3], 'psd');    power_theta = bandpower(pxx, fpow, [4, 7], 'psd');    power_alpha = bandpower(pxx, fpow, [8, 13], 'psd');    power_beta = bandpower(pxx, fpow, [14, 30], 'psd');    power_gamma = bandpower(pxx, fpow, [31, 60], 'psd');%从功率谱可以看出50HZ以后就基本没有幅度了    %各节律平均功率数组    powerFeatures=[power_delta,power_theta,power_alpha,power_beta,power_gamma];end

⛄ 运行结果

image.gif编辑

image.gif编辑

image.gif编辑

⛄ 参考文献

    1. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
    2. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
    3. Chollet, F. (2017). Deep learning with Python. Manning Publications.
    4. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
    5. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

    ⛳️ 代码获取关注我

    ❤️部分理论引用网络文献,若有侵权联系博主删除
    ❤️ 关注我领取海量matlab电子书和数学建模资料

    🍅 仿真咨询

    1 各类智能优化算法改进及应用

    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

    2 机器学习和深度学习方面

    卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

    2.图像处理方面

    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

    3 路径规划方面

    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

    4 无人机应用方面

    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
    、无人机安全通信轨迹在线优化

    5 无线传感器定位及布局方面

    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

    6 信号处理方面

    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

    7 电力系统方面

    微电网优化、无功优化、配电网重构、储能配置

    8 元胞自动机方面

    交通流 人群疏散 病毒扩散 晶体生长

    9 雷达方面

    卡尔曼滤波跟踪、航迹关联、航迹融合
    相关文章
    |
    3月前
    |
    安全
    【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
    本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
    202 6
    【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
    |
    3月前
    |
    存储 算法 搜索推荐
    【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
    本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
    129 3
    【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
    |
    3月前
    |
    数据采集 存储 移动开发
    【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
    本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
    90 0
    【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
    |
    5月前
    |
    机器学习/深度学习 数据可视化 算法
    探索MATLAB世界:掌握基础知识与实用技能(1. MATLAB环境与基本操作 2. 数据类型与变量 3. 条件与循环,1. 数据分析与统计 2. 图像处理与计算机视觉 3. 信号处理与控制系统)
    探索MATLAB世界:掌握基础知识与实用技能(1. MATLAB环境与基本操作 2. 数据类型与变量 3. 条件与循环,1. 数据分析与统计 2. 图像处理与计算机视觉 3. 信号处理与控制系统)
    54 0
    |
    6月前
    |
    机器学习/深度学习 算法
    m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
    在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
    186 4
    |
    5月前
    |
    机器学习/深度学习 算法
    m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
    摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
    56 0
    |
    6月前
    |
    数据安全/隐私保护
    耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
    地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
    基于混合整数规划的微网储能电池容量规划(matlab代码)
    基于混合整数规划的微网储能电池容量规划(matlab代码)
    |
    6月前
    |
    算法 调度
    含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
    含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
    |
    6月前
    |
    Serverless
    基于Logistic函数的负荷需求响应(matlab代码)
    基于Logistic函数的负荷需求响应(matlab代码)

    热门文章

    最新文章

    下一篇
    无影云桌面