Elasticsearch基本概念讲解

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: Elasticsearch基本概念讲解

Elasticsearch是什么

The Elastic Stack, 包括 Elasticsearch、Kibana、Beats 和 Logstash(也称为 ELK Stack)。能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视化。Elaticsearch,简称为 ES,ES 是一个开源的高扩展的分布式全文搜索引擎,是整个 Elastic Stack 技术栈的核心。它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理 PB 级别的数据。

全文搜索引擎

Google,百度类的网站搜索,它们都是根据网页中的关键字生成索引,我们在搜索的时候输入关键字,它们会将该关键字即索引匹配到的所有网页返回;还有常见的项目中应用日志的搜索等等。对于这些非结构化的数据文本,关系型数据库搜索不是能很好的支持。


一般传统数据库,全文检索都实现的很鸡肋,因为一般也没人用数据库存文本字段。进行全文检索需要扫描整个表,如果数据量大的话即使对 SQL 的语法优化,也收效甚微。建立了索引,但是维护起来也很麻烦,对于 insert 和 update 操作都会重新构建索引。


基于以上原因可以分析得出,在一些生产环境中,使用常规的搜索方式,性能是非常差的:


搜索的数据对象是大量的非结构化的文本数据。

文件记录量达到数十万或数百万个甚至更多。

支持大量基于交互式文本的查询。

需求非常灵活的全文搜索查询。

对高度相关的搜索结果的有特殊需求,但是没有可用的关系数据库可以满足。

对不同记录类型、非文本数据操作或安全事务处理的需求相对较少的情况。

为了解决结构化数据搜索和非结构化数据搜索性能问题,我们就需要专业,健壮,强大的全文搜索引擎


这里说到的全文搜索引擎指的是目前广泛应用的主流搜索引擎。它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。这个过程类似于通过字典中的检索字表查字的过程。

核心概念

索引(Index)

一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母),并且当我们要对这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字。在一个集群中,可以定义任意多的索引。能搜索的数据必须索引,这样的好处是可以提高查询速度,比如:新华字典前面的目录就是索引的意思,目录可以提高查询速度。


Elasticsearch **索引的精髓:一切设计都是为了提高搜索的性能。**对应关系型数据库中“库”的概念。

类型(Type)

在一个索引中,你可以定义一种或多种类型。

一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。通常,会为具有一组共同字段的文档定义一个类型。不同的版本,类型发生了不同的变化

对应关系型数据库中“表”的概念。

版本 Type
5.x 支持多种 type
6.x 只能有一种 type
7.x 默认不再支持自定义索引类型(默认类型为:_doc)

文档(Document)

一个文档是一个可被索引的基础信息单元,也就是一条数据。


比如:你可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个订单的一个文档。文档以 JSON(Javascript Object Notation)格式来表示,而 JSON 是一个到处存在的互联网数据交互格式。在一个 index/type 里面,你可以存储任意多的文档。


对应关系型数据库中“一行数据”的概念。

字段(Field)

相当于是数据表的字段,对文档数据根据不同属性进行的分类标识。

映射(Mapping)

mapping 是处理数据的方式和规则方面做一些限制,如:某个字段的数据类型、默认值、分析器、是否被索引等等。这些都是映射里面可以设置的,其它就是处理 ES 里面数据的一些使用规则设置也叫做映射,按着最优规则处理数据对性能提高很大,因此才需要建立映射,并且需要思考如何建立映射才能对性能更好。

分片(Shards)

一个索引可以存储超出单个节点硬件限制的大量数据。比如,一个具有 10 亿文档数据的索引占据 1TB 的磁盘空间,而任一节点都可能没有这样大的磁盘空间。或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch 提供了将索引划分成多份的能力,每一份就称之为分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。


分片很重要,主要有两方面的原因:


1)允许你水平分割 / 扩展你的内容容量。


2)允许你在分片之上进行分布式的、并行的操作,进而提高性能/吞吐量。


至于一个分片怎样分布,它的文档怎样聚合和搜索请求,是完全由 Elasticsearch 管理的,对于作为用户的你来说,这些都是透明的,无需过分关心。

被混淆的概念是,一个 Lucene 索引 我们在 Elasticsearch 称作 分片 。 一个Elasticsearch 索引 是分片的集合。 当 Elasticsearch 在索引中搜索的时候, 他发送查询到每一个属于索引的分片(Lucene 索引),然后合并每个分片的结果到一个全局的结果集。

副本(Replicas)

在一个网络 / 云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch 允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片(副本)。


复制分片之所以重要,有两个主要原因:


在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。


扩展你的搜索量/吞吐量,因为搜索可以在所有的副本上并行运行。


总之,每个索引可以被分成多个分片。一个索引也可以被复制 0 次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。默认情况下,Elasticsearch 中的每个索引被分片 1 个主分片和 1 个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有 1 个主分片和另外 1 个复制分片(1 个完全拷贝),这样的话每个索引总共就有 2 个分片,我们需要根据索引需要确定分片个数。

分配(Allocation)

将分片分配给某个节点的过程,包括分配主分片或者副本。如果是副本,还包含从主分片复制数据的过程。这个过程是由 master 节点完成的。

系统架构


一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同cluster.name 配置的节点组成, 它们共同承担数据和负载的压力。当有节点加入集群中或者从集群中移除节点时,集群将会重新平均分布所有的数据。


当一个节点被选举成为主节点时, 它将负责管理集群范围内的所有变更,例如增加、删除索引,或者增加、删除节点等。 而主节点并不需要涉及到文档级别的变更和搜索等操作,所以当集群只拥有一个主节点的情况下,即使流量的增加它也不会成为瓶颈。 任何节点都可以成为主节点。我们的示例集群就只有一个节点,所以它同时也成为了主节点。


作为用户,我们可以将请求发送到集群中的任何节点 ,包括主节点。


每个节点都知道任意文档所处的位置,并且能够将我们的请求直接转发到存储我们所需文档的节点。 无论我们将请求发送到哪个节点,它都能负责从各个包含我们所需文档的节点收集回数据,并将最终结果返回給客户端。 Elasticsearch 对这一切的管理都是透明的。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
71 3
|
1月前
|
测试技术 API 开发工具
ElasticSearch核心概念:倒排索引
ElasticSearch核心概念:倒排索引
59 6
|
2月前
|
JSON 关系型数据库 API
ElasticSearch 的概念解析与使用方式(二)
ElasticSearch 的概念解析与使用方式(二)
37 1
|
2月前
|
存储 搜索推荐 Java
ElasticSearch 的概念解析与使用方式(一)
ElasticSearch 的概念解析与使用方式(一)
74 1
|
4月前
|
存储 运维 搜索推荐
运维开发.索引引擎ElasticSearch.倒序索引的概念
运维开发.索引引擎ElasticSearch.倒序索引的概念
56 1
|
6月前
|
存储 搜索推荐 关系型数据库
【搜索引擎】elastic search核心概念
【搜索引擎】elastic search核心概念
58 0
|
存储 机器学习/深度学习 负载均衡
【Elasticsearch】学好Elasticsearch系列-核心概念
【Elasticsearch】学好Elasticsearch系列-核心概念
108 0
|
存储 监控 搜索推荐
ElasticSearch第二讲:ES详解 - ElasticSearch基础概念
ElasticSearch第二讲:ES详解 - ElasticSearch基础概念
248 0
|
存储 SQL 自然语言处理
|
存储 自然语言处理 搜索推荐
ElasticSearch的基本介绍与用途、ElasticSearch中一些基本的概念、倒排索引的基本概念
ElasticSearch的基本介绍与用途、ElasticSearch中一些基本的概念、倒排索引的基本概念
140 1