Baumer工业相机堡盟相机如何通过BGAPI SDK联合OpenCV进行图像简单拼接和显示(C++)

简介: Baumer工业相机堡盟相机如何通过BGAPI SDK联合OpenCV进行图像简单拼接和显示(C++)

Baumer工业相机

Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。


Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。

Baumer工业相机通过使用BGAPI SDK进行开发时,可以联合OpenCV实现图像的拼接转换和显示。


Baumer工业相机SDK联合OpenCVSharp的技术背景

Baumer工业相机SDK是一种软件开发工具包,用于与工业相机通信和图像采集。这些SDK通常包含驱动程序和API,可以让开发人员使用多个编程语言(例如C++、C#、Python)编写应用程序。它们也提供了许多图像参数和相机参数的控制选项,以便满足各种应用需求。


OpenCV是一种流行且广泛使用的计算机视觉库,提供了大量的图像处理和计算机视觉算法,例如图像过滤、特征提取、目标检测等。OpenCV可以与工业相机SDK集成,以便对从相机采集的图像进行处理和分析。


联合使用工业相机SDK和OpenCV,开发人员可以实现更高级别的图像处理和视觉分析应用。例如,他们可以使用工业相机SDK实现图像采集和实时显示,然后使用OpenCV进行图像处理和物体检测。他们还可以使用OpenCV的计算机视觉算法来实现特定应用,例如质量控制、机器人视觉导航和自动识别等。

这里主要描述如何在C#的平台下实现通过BGAPI SDK和OpenCV进行图像转换的核心代码,本文的回调函数将实现拼接四张图像并进行显示的功能。


代码分析

本文介绍使用BGAPI SDK对Baumer的JPEG工业相机进行开发时,使用通过BGAPI SDK和OpenCVSharp进行图像拼接并显示图像的功能


1.引用合适的类文件

C++环境下核心代码如下所示:

.h文件

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include<opencv2\opencv.hpp>

.cpp文件

#pragma comment(lib, "opencv_world341.lib")
#pragma comment(lib, "opencv_world341d.lib")

2.在回调函数里进行Buffer图像转换并进行拼接

后续进行图像转换为OpenCV库的Mat图像并进行拼接和显示的核心代码,如下所示:

void BGAPI2CALL BufferHandler( void * callBackOwner, Buffer * pBufferFilled )
{
  CGigeDemoDlg* pDlg = (CGigeDemoDlg*)callBackOwner;
  unsigned char* imagebuffer = NULL;
  USES_CONVERSION;
  try
  {
  if(pBufferFilled == NULL)
  {
  }
  else if(pBufferFilled->GetIsIncomplete() == true)
  {
    // queue buffer again
    pBufferFilled->QueueBuffer();
  }
  else
  {
    pDlg->FrameID= pBufferFilled->GetFrameID();                                                 //获取当前图像FrameID显示帧率
    int width = 0, height = 0;
    width = (int)pBufferFilled->GetWidth();height = (int)pBufferFilled->GetHeight();    //获取当前图像像素长宽
    CString PixelFormat1 = (CString)pBufferFilled->GetPixelFormat();        //获取当前图像像素格式    
    imagebuffer = (BYTE*)((bo_int64)pBufferFilled->GetMemPtr()+pBufferFilled->GetImageOffset());//获取当前图像数据
    #pragma  region //保存图像功能
    if(pDlg->m_bSaveImage &&!pDlg->m_strDirectory.IsEmpty())
    {
    /*CTime time = CTime::GetCurrentTime(); 
    CString strtime;
    strtime.Format(_T("\\%4d%2d%2d%2d%2d%2d"),time.GetYear(),time.GetMonth(),time.GetDay(),time.GetHour(),time.GetMinute(),time.GetSecond());
    CString  strpath = pDlg->m_strDirectory+strtime+".jpg";
    pDlg->SaveImageMono(strpath, imagebuffer,width,height);*/
    pDlg->m_bSaveImage = false;
    #pragma region 相机中内存图像数据转换为opencv里的Mat数据
    CTime time = CTime::GetCurrentTime(); 
    CString strtime;
    strtime.Format(_T("\\%4d%2d%2d%2d%2d%2d"),time.GetYear(),time.GetMonth(),time.GetDay(),time.GetHour(),time.GetMinute(),time.GetSecond());
    CString strpath2 =_T("C:\\Users\\BAUMER\\Desktop\\")+strtime+"Mat.jpg";
    cv::String cvstrpath = W2A(strpath2);
    cv::Mat* imgbuf2 = new cv::Mat((int)pBufferFilled->GetHeight(),(int)pBufferFilled->GetWidth(),CV_8UC1,(char *)pBufferFilled->GetMemPtr());
    cv::Mat imOriginal2 = cv::imdecode(*imgbuf2, CV_LOAD_IMAGE_GRAYSCALE); //将Mat指针数据转换为Mat数据
    cv::imwrite(cvstrpath, *imgbuf2); //保存图片
    #pragma endregion
    }
    #pragma endregion 
    Gdiplus::Rect rc = Gdiplus::Rect(0,0,width,height);
    #pragma region 黑白相机代码:像素格式为mono时转Bitmap的代码,彩色相机此处代码不同
    if(pDlg->m_pBitmap == NULL)
    {
    pDlg->m_pBitmap = new Gdiplus::Bitmap(width,height,PixelFormat8bppIndexed);
    }
    Gdiplus::BitmapData lockedbits;
    Gdiplus::ColorPalette * pal = (Gdiplus::ColorPalette*)new BYTE[sizeof(Gdiplus::ColorPalette)+255*sizeof(Gdiplus::ARGB)];
    pal->Count=256;
    for(UINT i=0;i<256;i++)
    {
    UINT color=i*65536+i*256+i;
    color= color|0xFF000000;
    pal->Entries[i]=color;
    }   
    pDlg->m_pBitmap->SetPalette(pal);
    Gdiplus::Status ret = pDlg->m_pBitmap->LockBits(&rc,Gdiplus::ImageLockModeWrite,PixelFormat8bppIndexed,&lockedbits);
    BYTE* pixels = (BYTE*)lockedbits.Scan0;
    BYTE* src = (BYTE*)imagebuffer;//这里将使用转换后的数据imagebuffer2
    for (int row = 0; row < height; ++row) 
    {
    CopyMemory(pixels, src, lockedbits.Stride);
    pixels += width;
    src += width;
    }
    pDlg->m_pBitmap->UnlockBits(&lockedbits);
    #pragma endregion 
    #pragma region //在C++中对图像使用opencv的拼接算法转换
    cv::Mat* imgbufnew = new cv::Mat((int)pBufferFilled->GetHeight(),(int)pBufferFilled->GetWidth(),CV_8UC1,(char *)pBufferFilled->GetMemPtr());
    cv::Mat imOriginalnew = cv::imdecode(*imgbufnew , CV_LOAD_IMAGE_GRAYSCALE); //将Mat指针数据转换为Mat数据
    cv::Mat imConvertnew;
    cv::Mat  Matgray2 = imOriginalnew ;
    cv::Mat  Matgray3 = imOriginalnew ;
    cv::Mat  Matgray4 = imOriginalnew ;
    cv::Mat panorama1;
    cv::Mat panorama2;
    cv::VConcat(Matgray1, Matgray2, &panorama1);
    cv::VConcat(Matgray3, Matgray4, &panorama2);
    cv::HConcat(panorama1, panorama2, &imConvertnew);
    // 转换成Gdiplus::Bitmap对象   
    Gdiplus::Bitmap* bitmapImage = new Gdiplus::Bitmap(imConvertnew.cols, imConvertnew.rows,  imConvertnew.cols, PixelFormat8bppIndexed, (BYTE*)imConvertnew.data);
    pDlg->m_pBitmap = bitmapImage;
    #pragma endregion 
    #pragma region //将图像显示在PictureControl控件上
    HDC hDC = ::GetDC(pDlg->m_stcPicture.m_hWnd);
    Gdiplus::Graphics GdiplusDC(hDC);
    CRect rcControl;
    pDlg->m_stcPicture.GetWindowRect(&rcControl);
    Gdiplus::Rect rtImage(0,0,rcControl.Width(),rcControl.Height());
    GdiplusDC.DrawImage(pDlg->m_pBitmap,rtImage,0,0,width,height, Gdiplus::UnitPixel);
    delete []pal;
    ::ReleaseDC(pDlg->m_stcPicture.m_hWnd,hDC);
    delete pDlg->m_pBitmap ;
    pDlg->m_pBitmap =NULL;
    #pragma endregion 
    // queue buffer again
    pBufferFilled->QueueBuffer();
  }
  }
  catch (BGAPI2::Exceptions::IException& ex)
  {
  CString str;
  str.Format(_T("ExceptionType:%s! ErrorDescription:%s in function:%s"),ex.GetType(),ex.GetErrorDescription(),ex.GetFunctionName());  
  } 
}

3.OpenCV进行图像拼接的具体应用

C++调用代码如下所示:

#region//对四张图像进行基础拼接
cv::Mat* imgbufnew = new cv::Mat((int)pBufferFilled->GetHeight(),(int)pBufferFilled->GetWidth(),CV_8UC1,(char *)pBufferFilled->GetMemPtr());
cv::Mat imOriginalnew = cv::imdecode(*imgbufnew , CV_LOAD_IMAGE_GRAYSCALE); //将Mat指针数据转换为Mat数据
cv::Mat imConvertnew;
cv::Mat  Matgray2 = imOriginalnew ;
cv::Mat  Matgray3 = imOriginalnew ;
cv::Mat  Matgray4 = imOriginalnew ;
cv::Mat panorama1;
cv::Mat panorama2;
cv::VConcat(Matgray1, Matgray2, &panorama1);
cv::VConcat(Matgray3, Matgray4, &panorama2);
cv::HConcat(panorama1, panorama2, &imConvertnew);
#endregion

工业相机图像通过OpenCV转为Mat图像的优点

低水平图像处理: OPENCV为低级别的图像处理提供了一套丰富的库。它允许轻松访问图像特征,如对比度、亮度和颜色校正。


实时视频处理: 使用OPENCV,你可以实时处理视频流,允许对处理过程进行即时反馈和调整。


精确的物体检测: OPENCV提供先进的物体检测和识别算法,能够准确识别和跟踪视频流中的物体。


高效的硬件利用: OPENCV的设计旨在最大限度地提高硬件利用率,使其成为一个高效的视频处理平台。


跨平台兼容性: OPENCV与多种操作系统兼容,使其易于集成到现有的软件系统中。


总的来说,通过OPENCV将工业相机图像转换为Mat图像,可以实现高效、准确、实时的图像处理和分析,使其成为工业应用的有力工具。


工业相机图像通过OpenCV转为Mat图像的行业应用

自动化生产控制:工业相机可以用于自动化生产控制,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对产品进行检测、分类、计数等操作,实现自动化生产控制。


智能交通:工业相机可以用于智能交通,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对车辆进行识别、计数、跟踪等操作,实现智能交通管理。


医疗影像:工业相机可以用于医疗影像,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对医疗影像进行分析、诊断等操作,提高医疗诊断的准确性和效率。


物流仓储:工业相机可以用于物流仓储,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对物流仓储过程进行监控、管理、智能化等操作,提高物流仓储效率和安全性。


视频监控:工业相机可以用于视频监控,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对视频图像进行分析、识别、跟踪等操作,实现智能化视频监控。

目录
相关文章
|
3月前
|
算法 开发工具 计算机视觉
【零代码研发】OpenCV实验大师工作流引擎C++ SDK演示
【零代码研发】OpenCV实验大师工作流引擎C++ SDK演示
60 1
|
4月前
|
监控 API 开发工具
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取每张图像的微秒时间和FrameID功能(C++)
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取每张图像的微秒时间和FrameID功能(C++)
64 0
|
4月前
|
开发工具 对象存储 Android开发
对象存储oss使用问题之C++使用OSS SDK时遍历OSS上的文件时崩溃如何解决
《对象存储OSS操作报错合集》精选了用户在使用阿里云对象存储服务(OSS)过程中出现的各种常见及疑难报错情况,包括但不限于权限问题、上传下载异常、Bucket配置错误、网络连接问题、跨域资源共享(CORS)设定错误、数据一致性问题以及API调用失败等场景。为用户降低故障排查时间,确保OSS服务的稳定运行与高效利用。
159 0
|
12天前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
29 4
|
22天前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
WK
|
20天前
|
编解码 计算机视觉 Python
如何在OpenCV中进行图像转换
在OpenCV中,图像转换涉及颜色空间变换、大小调整及类型转换等操作。常用函数如`cvtColor`可实现BGR到RGB、灰度图或HSV的转换;`resize`则用于调整图像分辨率。此外,通过`astype`或`convertScaleAbs`可改变图像数据类型。对于复杂的几何变换,如仿射或透视变换,则可利用`warpAffine`和`warpPerspective`函数实现。这些技术为图像处理提供了强大的工具。
WK
50 1
|
1月前
|
机器人 计算机视觉
巧用 OpenCV solvePnP() 函数完成由图像坐标系到机器人坐标系的转换(二维坐标系之间的转换)
巧用 OpenCV solvePnP() 函数完成由图像坐标系到机器人坐标系的转换(二维坐标系之间的转换)
37 2
|
3月前
|
算法 计算机视觉
【Qt&OpenCV 图像的感兴趣区域ROI】
【Qt&OpenCV 图像的感兴趣区域ROI】
86 1
|
3月前
|
运维 算法 计算机视觉
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
51 1
|
3月前
|
存储 编解码 算法
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
58 0