MySQL主从复制的原理与实操+mycat2读写分离

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL主从复制的原理与实操+mycat2读写分离

MySQL主从复制的原理与实操

主从复制原理

当一个MySQL数据库服务器负载过重或者需要横向扩展时,主从复制是一种非常常见的解决方案。MySQL主从复制是将一个数据库服务器(master)的数据复制到其他数据库服务器(salve)的过程。在这个过程中,主服务器上的所有更改都将被自动复制到从服务器,从而实现数据同步。

下面是MySQL主从复制的基本原理:

  1. 主服务器记录二进制日志(Binary Log)。
  2. 从服务器连接到主服务器并请求复制数据。主服务器创建一个复制线程,将复制数据发送给从服务器。从服务器通过IO Thread(输入/输出线程)连接到主服务器,并从主服务器请求二进制日志文件。主服务器在二进制日志中记录所有的更改,然后将这些更改发送给从服务器。IO Thread 将这些更改写入从服务器上的中继日志文件(Relay Log)。
  3. 从服务器执行中继日志中的更改。SQL Thread(SQL 线程)从中继日志中读取数据并将其应用到从服务器上。SQL Thread 按照主服务器的顺序执行每个更改,以确保从服务器与主服务器保持同步。
  4. 当有新的更改发生时,主服务器将记录更改并将其发送到所有连接的从服务器。从服务器将这些更改写入中继日志文件并应用这些更改。
  5. 如果从服务器出现问题,可以通过将一个新的从服务器连接到主服务器来重新启动复制进程。

需要注意的是,MySQL主从复制并不是一种高可用性解决方案。如果主服务器宕机,从服务器将不能自动接管服务。因此,在设计高可用性系统时,可能需要使用其他技术。

MySQL主从复制的高级应用

  1. 复制方式:MySQL主从复制可以通过同步或异步的方式进行复制。在同步复制中,主服务器必须等待所有的从服务器确认它们已成功地接收并应用了所有更改,才能提交更改。这确保了数据的一致性,但会降低系统的性能。在异步复制中,主服务器无需等待从服务器确认,因此可以提高系统的性能,但可能会导致数据不一致。
  2. 复制过滤:在进行主从复制时,可以使用复制过滤来控制哪些更改将被复制到从服务器。例如,可以指定仅复制特定的数据库、表或列。
  3. 自动故障转移:MySQL主从复制本身并不支持自动故障转移,因此在设计高可用性系统时,需要使用其他技术,例如基于虚拟IP地址的故障转移技术或者结合使用MySQL主从复制和集群技术来实现。
  4. 主从切换:在某些情况下,需要手动切换主从角色,例如当主服务器出现故障时,需要手动将从服务器提升为主服务器。在进行主从切换时,需要注意切换的正确性以及避免数据不一致。

总的来说,MySQL主从复制是一种非常强大和灵活的技术,它可以实现数据的高可用性、负载均衡和数据备份等目的。但是在使用时需要了解其原理和细节,以避免出现潜在的问题。

MySQL主从复制实操(一主两从)

环境准备

两台机器一主两从。

主master:IP 192.168.133.129

从slave1:IP 192.168.133.130

从slave2:IP 192.168.133.131

master配置

[mysqld] 
log_bin = mysql-bin 
server_id = 1
systemctl restart mysqld      # 重启服务

2.建立同步账号

mysql> grant replication slave on *.* to 'rep'@'192.168.133.%' identified by
'123456';
mysql> show grants for 'rep'@'192.168.133.%';

3.通过mysqldump同步三个数据库中的db

# 锁表设置只读为后面备份准备,注意生产环境要提前申请停机时间; 
mysql> flush tables with read lock; 
# 提示:如果超过设置时间不操作会自动解锁。 
mysql> show variables like '%timeout%'; 
# 测试锁表后是否可以创建数据库:
# 查看主库状态,即当前日志文件名和二进制日志偏移量
mysql> show master status;
# 备份数据库数据
mysqldump -uroot -p -A  -B ···> /server/backup/mysql_bak.$(date +%F).sql

4.解锁
mysql> unlock tables;

5.主库备份数据上传到从库

scp /server/backup/mysql_bak.2015-11-18.sql.gz 192.168.95.130:/server/backup

slave设置

1)设置server-id值并关闭binlog参数

[mysqld] 
log_bin = mysql-bin 
server_id = 130
# 重启数据库
systemctl restart mysqld  

2.还原从主库备份数据

cd /server/backup/ 
mysql -uroot -p < /server/backup/mysql_bak.$(date +%F).sql
# 检查还原: 
mysql -uroot -p -e 'show databases;' 

3.设定从主库同步

mysql> change master to 
MASTER_HOST='192.168.95.120', 
MASTER_PORT=3306, 
MASTER_USER='rep', 
MASTER_PASSWORD='123456', 
MASTER_LOG_FILE='mysql-bin.000003', 
MASTER_LOG_POS=329; 

4.启动从库同步开关

mysql> start slave; 
# 检查状态: 
mysql> show slave status\G
# Slave_IO_Running: IO线程是否打开 YES/No/NULL
# Slave_SQL_Running: SQL线程是否打开 YES/No/NULL

MySQL读写分离配置(一主两从)

创建数据源

# 添加读写的数据源 
/*+ mycat:createDataSource{ 
"dbType":"mysql", 
"idleTimeout":60000, 
"initSqls":[], 
"initSqlsGetConnection":true, 
"instanceType":"READ_WRITE", 
"maxCon":1000, 
"maxConnectTimeout":3000, 
"maxRetryCount":5, 
"minCon":1, 
"name":"m1", 
"password":"123456", 
"type":"JDBC", 
"url":"jdbc:mysql://127.0.0.1:3306/db1? useUnicode=true&serverTimezone=UTC&characterEncoding=UTF-8", "user":"root", 
"weight":0 
} */;
# 添加读的数据源 
/*+ mycat:createDataSource{ 
"dbType":"mysql", 
"idleTimeout":60000, 
"initSqls":[], 
"initSqlsGetConnection":true, 
"instanceType":"READ", 
"maxCon":1000, 
"maxConnectTimeout":3000, 
"maxRetryCount":5,
"minCon":1, 
"name":"m1s1", 
"password":"123456", 
"type":"JDBC", 
"url":"jdbc:mysql://127.0.0.1:3307/db1? useUnicode=true&serverTimezone=UTC&characterEncoding=UTF-8",
"user":"root", 
"weight":0 }
*/;
/*+ mycat:createDataSource{ 
"dbType":"mysql", 
"idleTimeout":60000, 
"initSqls":[], 
"initSqlsGetConnection":true, 
"instanceType":"READ", 
"maxCon":1000, 
"maxConnectTimeout":3000, 
"maxRetryCount":5,
"minCon":1, 
"name":"m1s2", 
"password":"123456", 
"type":"JDBC", 
"url":"jdbc:mysql://127.0.0.1:3308/db1? useUnicode=true&serverTimezone=UTC&characterEncoding=UTF-8",
"user":"root", 
"weight":0 }
*/;

查询数据源

/*+ mycat:showDataSources{} */

7.3 创建集群

/*! mycat:createCluster{ 
"clusterType":"MASTER_SLAVE", 
"heartbeat":{ 
"heartbeatTimeout":1000, 
"maxRetry":3,
"minSwitchTimeInterval":300, 
"slaveThreshold":0 
}, "masters":[ 
"m1
" ], 
"maxCon":2000,
"name":"prototype",
"readBalanceType":"BALANCE_ALL",
"replicas":[
"m1s1"
"m1s2"
],
"switchType":"SWITCH"
} */;

查询集群

/*+ mycat:showClusters{} */

创建逻辑库

CREATE DATABASE db1 DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;

修改逻辑库的数据源

修改conf/schemas/db1.schema.json

vim /data/mycat/conf/schemas/db1.schema.json

在里面添加 "targetName":"prototype",

[root@node4 mysqlms]# cat /data/mycat/conf/schemas/db1.schema.json
{
"customTables":{},
"globalTables":{},
"normalProcedures":{},
"normalTables":{},
"schemaName":"db1",
"shardingTables":{},
"targetName":"prototype",
"views":{}
}

测试读写分离是否成功

在MyCAT里面测试

重启MyCAT:

[root@node4 mysqlms]# cd /data/mycat/bin/
[root@node4 bin]# ./mycat restart

1)在MyCAT里面创建一个sys_user表:

use db1;
CREATE TABLE SYS_USER( ID BIGINT PRIMARY KEY, USERNAME VARCHAR(200) NOT NULL,ADDRESS VARCHAR(500));

2)通过注释生成物理库和物理表:

如果物理表不存在,在 MyCAT2 能正常启动的情况下,根据当前配置自动创建分片表,全局表和物理 表:

/*+ mycat:repairPhysicalTable{} */;

3)查看后端物理库

4)在MyCAT里面向sys_user表添加一条数据:

INSERT INTO SYS_USER(ID,USERNAME,ADDRESS) VALUES(1,"XIAOMING","WUHAN");

5)修改MySQL里面的让数据不一样

6)在MyCAT里面查询数据,会发现每次查询的结果不一样

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
8天前
|
关系型数据库 MySQL Linux
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
|
4天前
|
SQL 关系型数据库 MySQL
如何实现 MySQL 的读写分离?
本文介绍了 MySQL 读写分离的实现方式及其主从复制原理,解释了如何通过主从架构提升读并发能力。重点分析了主从同步延时问题及解决方案,如半同步复制、并行复制等技术手段,并结合实际案例探讨了高并发场景下的优化策略。文章还提醒开发者在编写代码时需谨慎处理插入后立即查询的情况,避免因主从延时导致的数据不一致问题。
94 44
如何实现 MySQL 的读写分离?
|
4天前
|
SQL 网络协议 关系型数据库
MySQL 主从复制
主从复制是 MySQL 实现数据冗余和高可用性的关键技术。主库通过 binlog 记录操作,从库异步获取并回放这些日志,确保数据一致性。搭建主从复制需满足:多个数据库实例、主库开启 binlog、不同 server_id、创建复制用户、从库恢复主库数据、配置复制信息并开启复制线程。通过 `change master to` 和 `start slave` 命令启动复制,使用 `show slave status` 检查同步状态。常见问题包括 IO 和 SQL 线程故障,可通过重置和重新配置解决。延时原因涉及主库写入延迟、DUMP 线程性能及从库 SQL 线程串行执行等,需优化配置或启用并行处理
65 40
|
6天前
|
SQL 存储 关系型数据库
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
MySQL原理简介—9.MySQL索引原理
|
4天前
|
存储 关系型数据库 MySQL
MySQL底层概述—6.索引原理
本文详细回顾了:索引原理、二叉查找树、平衡二叉树(AVL树)、红黑树、B-Tree、B+Tree、Hash索引、聚簇索引与非聚簇索引。
MySQL底层概述—6.索引原理
|
6天前
|
SQL 监控 关系型数据库
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
|
8天前
|
SQL 缓存 关系型数据库
MySQL原理简介—7.redo日志的底层原理
本文介绍了MySQL中redo日志和undo日志的主要内容: 1. redo日志的意义:确保事务提交后数据不丢失,通过记录修改操作并在系统宕机后重做日志恢复数据。 2. redo日志文件构成:记录表空间号、数据页号、偏移量及修改内容。 3. redo日志写入机制:redo日志先写入Redo Log Buffer,再批量刷入磁盘文件,减少随机写以提高性能。 4. Redo Log Buffer解析:描述Redo Log Buffer的内存结构及刷盘时机,如事务提交、Buffer过半或后台线程定时刷新。 5. undo日志原理:用于事务回滚,记录插入、删除和更新前的数据状态,确保事务可完整回滚。
|
8天前
|
SQL 缓存 关系型数据库
MySQL原理简介—8.MySQL并发事务处理
这段内容深入探讨了SQL语句执行原理、事务并发问题、MySQL事务隔离级别及其实现机制、锁机制以及数据库性能优化等多个方面。
|
6天前
|
SQL 关系型数据库 MySQL
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。
|
6天前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。