Keras 3.0预览版迎来重大更新:适用于TensorFlow、JAX和PyTorch

简介: Keras 3.0预览版迎来重大更新:适用于TensorFlow、JAX和PyTorch

以后,Keras 适用的框架只会越来越多。


Keras 出新库了,这次是 Keras Core,我们可以将其理解为 Keras 3.0 预览版,预计今年秋天正式发布。

总结而言,这次 Keras Core 对 Keras 代码库进行了完全重写,除了 TensorFlow 之外,它还将 Keras API 引入 JAX 和 PyTorch。

现在,Keras Core 可以作为 tf.keras 的替代品,当使用 TensorFlow 后端时,几乎完全向后兼容 tf.keras 代码。在绝大多数情况下,你只需使用 import keras_core as keras 来代替 from tensorflow import keras 导入即可,替换之后,以前的代码还能正常跑,不仅如此,性能还提高了。

其实,在此之前,Keras 就已经能在 Theano、CNTK(甚至 MXNet)等框架之上运行。最近几年,随着使用 TensorFlow、PyTorch、JAX 的用户越来越多。例如根据 2023 年 StackOverflow 以及 2022 年的 Kaggle 调查数据显示,2022-2023 年 TensorFlow 占据 55% 到 60% 的市场份额,PyTorch 占据 40% 到 45%。同时,JAX 虽然市场份额较小,但已经被谷歌 DeepMind、Midjourney、Cohere 等顶级生成式人工智能公司所接受和采用。

这么看来,本次新库的发布,是在情理之中。

Keras 创始人 François Chollet 表示:现在,(借助 Keras Core)你可以编写跨框架深度学习组件,并从每个框架提供的最佳功能中受益。

接下来,我们看看 Keras Core 具体有哪些特点。

Keras Core 的主要特点

首先是 Keras Core 实现了完整的 Keras API,可支持 TensorFlow、JAX 和 PyTorch。

Keras Core 的第二个特点:它是一个可用于深度学习的、跨框架的低级语言。基于 Keras Core,用户可以创建组件(例如自定义层和预训练模型),而这些组件可以适用于任何框架。特别是,Keras Core 允许用户访问 keras_core.ops 命名空间,后者适用于所有后端。

Keras Core 的第三个特点是与 JAX、PyTorch 和 TensorFlow 中的本地工作流无缝集成。与 Keras 1.0 不同,Keras Core 不只是针对以 Keras 为中心的工作流,还意味着可以与低级的后端本地工作流无缝地工作。

Keras Core 其他特点还包括:支持所有后端跨框架的数据 pipeline。多框架的机器学习意味着多框架的数据加载和处理,处理起来比较麻烦。现在 Keras Core 模型可以使用广泛的数据 pipeline 进行训练 —— 不管你是使用 JAX、PyTorch 还是 TensorFlow 后端。

预训练模型。从现在开始,你可以借助 Keras Core 使用更多的预训练模型。现在已经有 40 个 Keras 应用模型可在后端中使用,此外,KerasCV 和 KerasNLP 中存在的大量预训练模型(例如 BERT、T5、YOLOv8、Whisper 等)也适用于所有后端。

了解更多内容,请参考:https://keras.io/keras_core/announcement/

相关文章
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
85 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
1月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
3553 3
|
2月前
|
数据挖掘 PyTorch TensorFlow
|
1月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
48 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
1月前
|
并行计算 PyTorch TensorFlow
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
这篇文章详细介绍了如何在Anaconda环境下安装和配置深度学习所需的库和工具,包括PyTorch 1.6.0、CUDA 10.0、cuDNN 7.6.4、TensorFlow 1.15、pycocotools和pydensecrf,并提供了pip国内镜像源信息以及Jupyter Notebook和Anaconda的基本操作。
125 0
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
|
1月前
|
机器学习/深度学习 TensorFlow API
使用 TensorFlow 和 Keras 构建图像分类器
【10月更文挑战第2天】使用 TensorFlow 和 Keras 构建图像分类器
|
1月前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
79 0
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
63 0
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
65 0
|
8天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
36 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络

热门文章

最新文章

下一篇
无影云桌面