基于象虫损害优化算法的投资组合问题(Matlab代码实现)

简介: 基于象虫损害优化算法的投资组合问题(Matlab代码实现)

💥1 概述

象鼻虫是一种长着细长鼻子的昆虫,来自Curculionoide超科,约有97000种。其中大多数认为害虫会造成环境破坏,但一些种类,如小麦象鼻虫、玉米象鼻虫和棉铃象鼻虫,以对农作物,尤其是谷物造成巨大破坏而闻名。这项研究提出了一种新的基于群的元启发式算法,称为象鼻虫损伤优化算法(WDOA),该算法模拟了象鼻虫的飞行能力、鼻部力量和对作物或农产品的损伤能力。用12个基准单峰和多峰人工景观或优化测试函数对所提出的算法进行了测试。此外,所提出的WDOA被用于五个工程问题,以检查其解决问题的鲁棒性。问题包括旅行推销员问题(TSP)、n-Queens问题、投资组合问题、最优库存控制问题(OIC)和装箱问题(BPP)。所有测试的功能都与广泛使用的粒子群优化(PSO)、遗传算法(GA)、和谐搜索(HS)算法、帝国主义竞争算法(ICA)、萤火虫算法(FA)和差分进化(DE)算法等基准算法进行了比较。此外,所有问题都用DE、FA和HS算法进行了测试,所提出的算法通过提供精确性和合理的速度,在所有函数和问题上表现出鲁棒性和速度。


算法文章来源:

然后本文基于象鼻虫损害优化算法的TSP问题求解,用Matlab代码实现。

📚2 运行结果

部分代码:

data=load('mydata');
R=data.R;
nAsset=size(R,2);
MinRet=min(mean(R,1));
MaxRet=max(mean(R,1));
nSol=10;
DR=linspace(MinRet,MaxRet,nSol);
model.R=R;
model.method='cvar';
model.alpha=0.95;
W=zeros(nSol,nAsset);
WReturn=zeros(nSol,1);
WRisk=zeros(nSol,1);
for k=1:nSol
model.DesiredRet=DR(k);
disp(['Running for Solution #' num2str(k) ':']);
%-----------------------------------
out = RunWDOA(model);
%-----------------------------------
disp('__________________________');
disp('');
W(k,:)=out.BestSol.Out.w;
WReturn(k)=out.BestSol.Out.ret;
WRisk(k)=out.BestSol.Out.rsk;
end
EF=find(~IsDominated(WRisk,WReturn));
%% Results
figure;
plot(WRisk,WReturn,'y','LineWidth',2);
hold on;
plot(WRisk(EF),WReturn(EF),'r','LineWidth',4);
legend('','Efficient Frontier');
ax = gca; 
ax.FontSize = 14; 
ax.FontWeight='bold';
set(gca,'Color','w')
grid on;
xlabel('Risk');
ylabel('Return');
figure;
plot(out.BestCost,'k', 'LineWidth', 2);
xlabel('ITR');
ylabel('Cost Value');
ax = gca; 
ax.FontSize = 14; 
ax.FontWeight='bold';
set(gca,'Color','c')
grid on;
out.BestSol.Out


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码及文章阅读

相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
11天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。