[模型]多目标规划模型(三)

简介: [模型]多目标规划模型(三)

6.2 智能优化算法

6.2.1 智能优化算法的简介

智能优化算法由于其具有并行性、不需要求导或其它辅助知识、一次产生多个解和简单易于实现等优点,被视为求解多目标优化问题的有效方法

使用智能优化算法解决多目标优化问题的优点在于:

(1)能在一次算法过程中找到Pareto最优集中的多个解

(2)不局限于Pareto前沿的形状和连续性,易于处理不连续的、凹形的Pareto前沿

6.2.2 基于精英策略的快速非支配排序遗传算法(NSGA-II)

学习ing…

.

.

.

.

.

.

优化问题:

设变量

目标函数

约束函数

只有 x1 2 3 无约束优化(自变量约束),加上其他条件,约束优化

画目标函数的图形

画图

非劣排序

一般取交叉概率大,变异概率小

灵敏度分析

相关文章
|
机器学习/深度学习 监控 算法
信用风险评估评分卡建模方法及原理| 学习笔记
快速学习信用风险评估评分卡建模方法及原理。
信用风险评估评分卡建模方法及原理| 学习笔记
|
15天前
|
数据采集 监控 并行计算
基于MCMC的贝叶斯营销组合模型评估方法论: 系统化诊断、校准及选择的理论框架
贝叶斯营销组合建模(Bayesian Marketing Mix Modeling,MMM)作为一种先进的营销效果评估方法,其核心在于通过贝叶斯框架对营销投资的影响进行量化分析。
38 3
基于MCMC的贝叶斯营销组合模型评估方法论: 系统化诊断、校准及选择的理论框架
|
6月前
|
存储 并行计算 算法
大模型量化技术解析和应用
眼看人工智能含智能量越来越高含人量越来越低,是否开始担心自己要跟不上这趟高速列车了?内心是否也充满好奇:大模型背后的奥秘是什么?为何如此强大?它能为我所用吗?哪种技术最适合我的需求?
|
6月前
|
机器学习/深度学习 编解码 人工智能
什么样才算好图——从生图模型质量度量方法看模型能力的发展(下)
什么样才算好图——从生图模型质量度量方法看模型能力的发展(下)
286 1
|
6月前
|
机器学习/深度学习 数据采集 计算机视觉
什么样才算好图——从生图模型质量度量方法看模型能力的发展(上)
什么样才算好图——从生图模型质量度量方法看模型能力的发展
176 1
|
6月前
|
安全 算法 测试技术
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
|
6月前
|
计算机视觉
模型落地必备 | 南开大学提出CrossKD蒸馏方法,同时兼顾特征和预测级别的信息
模型落地必备 | 南开大学提出CrossKD蒸馏方法,同时兼顾特征和预测级别的信息
161 0
|
自然语言处理 计算机视觉
单一ViT模型执行多模态多任务,谷歌用协同训练策略实现多个SOTA
单一ViT模型执行多模态多任务,谷歌用协同训练策略实现多个SOTA
384 0
|
机器学习/深度学习 算法 前端开发
【机器学习基础】机器学习的模型评估(评估方法及性能度量原理及主要公式)
【机器学习基础】机器学习的模型评估(评估方法及性能度量原理及主要公式)
1046 0
下一篇
无影云桌面