什么是贝叶斯网络?原理入门

简介: 什么是贝叶斯网络?原理入门

现实生活中的很多问题都是概率问题,由多个变量(因素,要素)相互影响。而想要用贝叶斯网络对其建模,我们需要考虑三个问题:1. 如何定义节点;2.如何定义节点之间的概率依赖关系;3. 如何表示联合概率分布。

  假设我们现在有N 量,每个变量有K KK个取值,则可建模为如下形式:

image.png

若使用枚举法,参数个数为:K N

  假设变量之间相互独立,则联合概率分布大大简化为如下形式:


image.png

贝叶斯网络


  贝叶斯网络是一个有向无圈图(Directed Acyclic Graph, DAG)(有向边并不会形成一个圈),由代表变量节点及连接 这些节点有向边构成。节点代表随机变量,节点间的有向边代表了节点间的互相关系(由父节点指向其子节点),用条件概率表达变量间依赖关系,没有父节点的用先验概率进行信息表达。

image.png


我们以一个例子来对其进行实例化建模:

  实际生活中的一个例子:对一个学生能否拿到老师的推荐信这一问题进行建模研究。假设与该问题相关的变量有以下五个:试题难度、学生智力、考试成绩、高考成绩、是否 得到老师推荐信。那么其节点可定义为如下形式:

  可以看到Grade有两个父节点,SAT有一个父节点(有父子节点的表示为条件概率分布的形式)。所以其联合概率分布可表示为如下形式:

image.png

那写成这这种联合概率分布的情况有什么好处呢?我们可以看一下其参数形式:

  • 枚举法2 * 2 * 3 * 2 * 2 - 1 = 47 个参数(减去1的原因是联合概率分布求和需要等于1)。
  • 结构化分解1 + 1 + 8 + 3 + 2 = 15个参数 (每一行的参数求和需要等于1)。

  更一般地,假设n nn个二元随机变量的联合概率分布,表示该分布需要 2 n − 1 个参数。如果用贝叶斯网络建模,假设每个节点最多有 k kk 个父节点,所需要 的参数最多为 n ∗ 2 k,一般每个变量局部依赖于少数变量。

  算一个实际的例子:

  那为什么联合概率为什么可以表示为局部条件 概率表的乘积?

  • 随机变量 X ,Y 相互独立, 则会满足以下三个等式:


image.png

或者说上面三个等式中的任意一个等式成立,则随机变量X Y 是相互独立的。下图是其举例:

  • 随机变量 X ,Y 在给定 Z 条件下条件独立, 如果满足:


image.png

我们可以将下图中具体的数值代进去,其将会成立:

概率影响的流动性

  为了更好地去介绍贝叶斯网里面的条件独立性,我们引入新的概念,概率影响的流动性。概率影响的流动性说地是:在一定的观测条件下,变量间的取值概率是否会相互影响。所谓的观测条件是这个系统是否有观测变量,或者观测变量的取值是否确定。当变量取值未知,通常根据观测变量取值,对隐变量的取值概率进行推理

  比如:判断 W WW 是否为观测变量,X XXY YY的概率影响的流动性。

  这里要注意第3和第4中情况,第3种情况:当W WW未知的时候你才可以对X XXY YY进行推断。第4种情况:当W WW已知的时候,X XXY YY才可以进行概率之间的推断。

概率影响的流动性

  在贝叶斯网络里面有一个概率独立性定理:父节点已知时,该节点与其所有非后代的节点(non-descendants)条件独立。

  如上图所示,当SAT的父节点Intelligence已知时,DifficultyGradeLetter都与SAT条件独立。

贝叶斯网链式法则

  依据上述定理我们可以得到贝叶斯网络因子分解的形式:

贝叶斯网络推理的直观理解

  因果推断Causal Reasoning):顺着箭头方向推断。得到贝叶斯网络之后我们就可以进行推理计算。这种因果推理是顺着箭头方向进行的推理。

  贝叶斯网络的第二种推断叫做证据推断Evidential Reasoning):是逆着箭头推断的。

  交叉因果推断Intercausal Reasoning):双向箭头推断。

我的微信公众号名称:深度学习与先进智能决策

微信公众号ID:MultiAgent1024

公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

相关文章
|
2天前
|
前端开发 网络协议 安全
【网络原理】——HTTP协议、fiddler抓包
HTTP超文本传输,HTML,fiddler抓包,URL,urlencode,HTTP首行方法,GET方法,POST方法
|
2天前
|
域名解析 网络协议 关系型数据库
【网络原理】——带你认识IP~(长文~实在不知道取啥标题了)
IP协议详解,IP协议管理地址(NAT机制),IP地址分类、组成、特殊IP地址,MAC地址,数据帧格式,DNS域名解析系统
|
2天前
|
存储 JSON 缓存
【网络原理】——HTTP请求头中的属性
HTTP请求头,HOST、Content-Agent、Content-Type、User-Agent、Referer、Cookie。
|
4天前
|
JSON Dart 前端开发
鸿蒙应用开发从入门到入行 - 篇7:http网络请求
在本篇文章里,您将掌握鸿蒙开发工具DevEco的基本使用、ArkUI里的基础组件,并通过制作一个简单界面掌握使用
37 8
|
2天前
|
安全 算法 网络协议
【网络原理】——图解HTTPS如何加密(通俗简单易懂)
HTTPS加密过程,明文,密文,密钥,对称加密,非对称加密,公钥和私钥,证书加密
|
2天前
|
XML JSON 网络协议
【网络原理】——拥塞控制,延时/捎带应答,面向字节流,异常情况
拥塞控制,延时应答,捎带应答,面向字节流(粘包问题),异常情况(心跳包)
|
26天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
71 3
图卷积网络入门:数学基础与架构设计
|
5天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
37 1
|
16天前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
68 2
|
23天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
61 3

热门文章

最新文章