深度学习环境安装(anaconda、pycharm、cudn、cudnn、pytorch)

简介: 深度学习环境安装(anaconda、pycharm、cudn、cudnn、pytorch)

1.简介

深度学习环境安装(anaconda、pycharm、cudn、cudnn、pytorch),下文软件安装过程中,流程都是点击下一步,出现需要选择的都插入图片进行提示。


2、显卡驱动

2.1cudn安装

进入pytorch查看cuda支持的版本,如下图所示:


45711b2c8e2518ed70a98fb541e69ac8.png


下载cudn,进入发现版本是12.1不符合,点击箭头处,进入曾经版本下载,如下图所示:


3f23251e55fe1fb8eb8b0563b2ed896b.png


选择合适的版本点击进入,如下图所示:


9e9e0fd4e2d6923ea11f1c1f2ab353c3.png


安装系统要求进行选择如下所示:


8fb536641f6bc5602698206b4864941b.png


2.2 cudnn安装

下载cudnn:


deba7ecce5afac1f96b5d08d6a8ff241.png


选择合适的版本,如下图所示:


dec16c767d22293d2e3e588db29f58b9.png


选择合适的系统下载,如下图所示:


393ce8fd79fee540c60bc8d483e11d73.png


分别找到cudn安装路径,cudnn解压的路径,将cudnn三个子文件分别对应安装到CUDN文件中:


2b38e3cda67467d4dd7b59784cd3eb20.png

fe1db1eca0ccd9ea743a4be66e835eb6.png


找到环境变量-系统变量-path,分别将如下三个变量添加进去,完成安装。


873c3868f94a3bacf6e3b69b7169af1c.png


2.3 检查cudn、cudnn是否安装成功

首先win+R进入CMD,在命令行输入nvcc -V,如下图所示,出现红框内容,证明cudn安装无误。


c4bd62f7d1a21f22bcf012eb65084916.png


进入到cuda的安装路径,C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite,找到如下两个.exe文件,分别运行:


79864411ec3fbb694e2e0477c951de0d.png


3、 Anaconda安装

Anaconda下载


cc87f897006ce28e5c0c5594b45af89b.png

09f908dc8f69af051edf4a78d0912c11.png

dde9a561541c70bb9c08f1c4706e55b6.png


4、 pycharm安装

pycharm下载


f49e55478225aedd11f0b487d08b042c.png

cf945d83db74a9c5d580623ff5b83416.png

50a16da330ce1deb94557e4952d3f933.png


5、pytorch安装

1、查看对应版本


75e621a95d47e074d703643bc4f3d25f.png


2、终端安装

复制红框区域代码,在终端进行安装


3、检测

新建python文件,复制如下代码:

import torch # 如果pytorch安装成功即可导入
print(torch.cuda.is_available()) # 查看CUDA是否可用
print(torch.cuda.device_count()) # 查看可用的CUDA数量
print(torch.version.cuda) # 查看CUDA的版本号

运行如下所示:


相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
249 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
3271 3
|
11天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
32 7
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
157 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
136 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
1月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
26 1
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
7天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
36 9
|
3天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
4天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。