【信号处理】卡尔曼(Kalman)滤波(Matlab代码实现)

简介: 【信号处理】卡尔曼(Kalman)滤波(Matlab代码实现)

💥1 概述

Kalman滤波算法需以系统的时间离散化状态空间为基础",测量过程的计算方程为:

📚2 运行结果

部分代码:

%状态转移矩阵
F = [1 T 0 0 
     0 1 0 0
     0 0 1 T
     0 0 0 1];
H = [1 0 0 0 
     0 0 1 0];
%过程噪声
B = [T^2/2, 0; T, 0;
     0, T^2/2; 0, T]; %过程噪声分布矩阵
v = sigma_u^2;   %x方向的过程噪声向量//相当于Q
V = B * v * B';
% %观测噪声??
% W = B * noise_x;
%------Data initial-------%
X_real = zeros(4,N);
X = zeros(4,N);
Z1 = zeros(2,N);
X_EKF1 = zeros(4,N);
% P1 = zeros(4,4,N);
% K1 = zeros(4,2,N);
% Hj1 = zeros(2,4,N);
Z2 = zeros(2,N);
Z_polar2 = zeros(2,N);
X_EKF2 = zeros(4,N);
% P2 = zeros(4,4,N);
% K2 = zeros(4,2,N);
% Hj2 = zeros(2,4,N);
X_CC = zeros(4,N);
X_BC = zeros(4,N);
bias = zeros(8,N,M);
%-------Track Initial-------%
X_real(:,1) = [Rx, vx, Ry, vy]'; %x: km,km/s
X_EKF1(:,1) = [Rx, 0, Ry, 0];
X_EKF2(:,1) = [Rx, 0, Ry, 0];
X_CC(:,1) = [Rx, 0, Ry, 0];
X_BC(:,1) = [Rx, 0, Ry, 0];
%Monto-carlo
for m=1:M
    noise_x = randn(2,N).*sigma_x; %过程噪声
    noise_z1 = randn(2,N).*sigma_z; %观测噪声
    noise_z2 = randn(2,N).*sigma_z;
    %构造 真实轨迹X 与 观测轨迹Z 
    for n=2:N
        if n == 30
            X_real(2,n-1) = 1;
        end
        X_real(:,n) = F * X_real(:,n-1);
    end
    X = X_real + B * noise_x;
    Z1= H * X + noise_z1 - [x1,0;0,y1]*ones(2,N);
    Z2= H * X + noise_z1 - [x2,0;0,y2]*ones(2,N);
    %这里可以写成function的形式
    P_BC = P1;
    for n=2:N
        x_predict = F * X_EKF1(:,n-1);                       %状态一步预测
        p_predict = F * P1 * F'+ V;                             %协方差一步预测
        S = H * p_predict * H'+ R1;                             %新息协方差
        K1 = p_predict * H'/ S ;                                  %增益
        X_EKF1(:,n) = x_predict + K1 * (Z1(:,n) - H * x_predict + [x1;y1]);  %状态更新方程
        P1 = (eye(4)-K1*H) * p_predict;  %协方差更新方程 %后面一半要不要?
        x_predict2 = F * X_EKF2(:,n-1);                       %状态一步预测
        p_predict2 = F * P2 * F'+ V;                             %协方差一步预测
        S2 = H * p_predict2 * H'+ R2;                             %新息协方差
        K2 = p_predict2 * H'/ S2 ;                                  %增益
        X_EKF2(:,n) = x_predict2 + K2 * (Z2(:,n) - H * x_predict2 + [x2;y2]);  %状态更新方程
        P2 = (eye(4)-K2*H) * p_predict2;  %协方差更新方程 %后面一半要不要?
        P_CC = inv( inv(P1) + inv(P2));
        X_CC(:,n) = P_CC * (P1\X_EKF1(:,n) + P2\X_EKF2(:,n));
        P_BC = (eye(4)-K2*H)* F*P_BC*F'*(eye(4)-K1*H)';
        X_BC(:,n) = X_EKF2(:,n)+(P2-P_BC)/(P1+P2-2*P_BC)*(X_EKF1(:,n)-X_EKF2(:,n));
    end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]代云锋.自适应卡尔曼滤波在标准贯入度动态观测数据处理中的应用[J].测绘与空间地理信息,2022,45(08):184-188+192.


[2]蒋锐,李俊,徐友云,王小明,李大鹏.基于联邦卡尔曼滤波器的容错GPS-AOA-SINS组合导航算法[J].通信学报,2022,43(08):78-89.


[3]闫辉,周国华.基于Kalman滤波的船舶磁化干扰系数测量算法[J].中国舰船研究,2022,17(04):164-169.DOI:10.19693/j.issn.1673-3185.02273.


🌈4 Matlab代码实现

相关文章
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
232 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
算法
基于kalman滤波的UAV三维轨迹跟踪算法matlab仿真
本文介绍了一种使用卡尔曼滤波(Kalman Filter)对无人飞行器(UAV)在三维空间中的运动轨迹进行预测和估计的方法。该方法通过状态预测和观测更新两个关键步骤,实时估计UAV的位置和速度,进而生成三维轨迹。在MATLAB 2022a环境下验证了算法的有效性(参见附图)。核心程序实现了状态估计和误差协方差矩阵的更新,并通过调整参数优化滤波效果。该算法有助于提高轨迹跟踪精度和稳定性,适用于多种应用场景,例如航拍和物流运输等领域。
375 12
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
|
7月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章