基于粒子群优化算法的BP神经网络预测模型(Matlab代码实现)

简介: 基于粒子群优化算法的BP神经网络预测模型(Matlab代码实现)

1 概述

在工程应用中经常会遇到一些复杂的非线性系统,这些系统的状态方程复杂,难以准确的用数学方法建模,而BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数,具有非常强的非线性映射能力,使得其特别适合于求解内部机制复杂的问题.该方法是把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP网络,使得网络能够表达该未知非线性函数,然后用训练好的网络预测系统输出".但是传统的BP网络算法具有收敛速度慢、容易陷入局部极值和误差比较大等缺点,因此优化这种网络成了必要.粒子群优化算法作为一种智能算法,是一种仿生算法和随机搜索算法,参数少,寻优能力较好,将其和BP网络结合起来,优化BP网络的权值和阈值,弥补了BP网络的一些缺点,提高了BP网络拟合函数的能力.


2 粒子群优化算法

粒子群优化算法是一种群体智能的优化算法,它是源于对鸟类捕食行为的研究,鸟类捕食时,每只鸟找到食物最简单最有效的方法就是搜寻当前距离食物最近的鸟的周围区域. PSO算法是从这种生物种群行为特征中得到启发并求解优化问题的.算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值,粒子的速度决定了其移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优.

3 BP神经网络

BP神经网络是一种多层前馈神经网络,拓扑结构包括:输入层、隐层、输出层,它的主要特点是信号前向传递,误差反向传播.在前向传递中,输人信号从输人层经隐含层逐层处理,直至输出层,每--层的神经元状态只影响下一层神经元状态.如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阈值,从而使网络预测输出不断逼近期望输出. BP网络训练的步骤如下:


4 PSO优化 BP网络算法

BP网络的非线性泛化能力很强,但是其收敛速度慢,容易陷人局部极值,误差比较大,为了弥补BP网络的这种缺点,将PSO算法与BP网络结合,用PSO算法优化BP网络的权值和阈值,提高了网络的非线性拟合能力. PSO-BP算法如下:

(1)初始化网络的训练样本数m,测试样本数n ,隐层节点数hidden _.num,粒子群数目particle_num,迭代次数epoch ,惯性权重w ,加速度因子c,C2.

(2)根据目标函数获得训练样本和测试样本的输人和理想输出,并画出理想曲线和测试样本点.(3)随机初始化粒子群的位置和速度,并计算各粒子的适应度值.

(4)根据上述公式更新各个粒子的位置和速度,并记录每个粒子的最佳位置.(5)记录全局最优位置.

(6)计算测试样本的输出,并画出预测曲线及误差曲线.


部分代码:

%% 清空环境变量
tic
clc
clear
close all
format compact
%% 导入数据
load data1
input=In';
output=U3;
%%
% 随机生成训练集、测试集
rand('seed',0)
k = randperm(size(input,1));
m=7100;
P_train=input(k(1:m),:)';
T_train=output(k(1:m));
P_test=input(k(m+1:end),:)';
T_test=output(k(m+1:end));
%% 归一化
% 训练集
[Pn_train,inputps] = mapminmax(P_train,-1,1);
Pn_test = mapminmax('apply',P_test,inputps);
% 测试集
[Tn_train,outputps] = mapminmax(T_train,-1,1);
Tn_test = mapminmax('apply',T_test,outputps);
%% 节点个数
inputnum=size(Pn_train,1);
hiddennum=5;
outputnum=1;
%% 没有优化的bp
net=newff(Pn_train,Tn_train,hiddennum);
net.trainParam.epochs=200;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00000001;
net.trainParam.max_fail = 200;
%网络训练
[net,per2]=train(net,Pn_train,Tn_train);
an=sim(net,Pn_test);
error=an-Tn_test;
test_simu=mapminmax('reverse',an,outputps);
disp('优化前')
E1=norm(error);
E2=mse(error)
MAPE=mean(abs(error)./Tn_test);
figure
plot(test_simu)
hold on
plot(T_test)
legend('实际输出','期望输出')
%% 粒子群优化bp
% [bestchrom,trace]=psoforbp(inputnum,hiddennum,outputnum,Pn_train,Tn_train);%粒子群算法
% x=bestchrom;
% save result x
load result%直接调用训练好的
% 用pso优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2';
%% BP网络训练
%网络进化参数
net.trainParam.epochs=200;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00000001;
net.trainParam.max_fail = 200;
%网络训练
[net,per2]=train(net,Pn_train,Tn_train);
%% BP网络预测
%数据归一化
an=sim(net,Pn_test);
error=an-Tn_test;
test_simu=mapminmax('reverse',an,outputps);
disp('优化后')
E1=norm(error);
E2=mse(error)
MAPE=mean(abs(error)./Tn_test);
toc
%%
figure
plot(test_simu)
hold on
plot(T_test)
legend('实际输出','期望输出')


5 运行结果


6 参考文献

部分理论引用网络文献,如有侵权请联系删除。

[1]郝海霞.用粒子群算法优化BP神经网络进行函数拟合[J].山西师范大学学报(自然科学版),2017,31(01):14-16.DOI:10.16207/j.cnki.1009-4490.2017.01.004.

7 Matlab代码实现

回复关键字

相关文章
|
16天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
9天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
18天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
9天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
18天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
18天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
31 8
|
17天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
下一篇
DataWorks