【状态估计】无迹卡尔曼滤波(UKF)应用于FitzHugh-Nagumo神经元动力学研究(Matlab代码实现)

简介: 【状态估计】无迹卡尔曼滤波(UKF)应用于FitzHugh-Nagumo神经元动力学研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码及文献




💥1 概述

文献来源:


75d31071336741d3938f9581077fd395.png


本文综述了连续非线性动力系统噪声时间序列测量中参数和未观测到的轨迹分量的估计问题。首先表明,在没有明确考虑测量误差的参数估计技术(如回归方法)中,噪声测量会产生不准确的参数估计。另一个问题是,对于混沌系统,必须最小化以估计状态和参数的成本函数非常复杂,以至于常见的优化例程可能会失败。我们表明,包含有关潜在轨迹的时间连续性的信息可以显着改善参数估计。本文详细描述了两种同时考虑变量误差问题和复杂成本函数问题的方法:射击方法和递归估计技术。两者都在数值示例中进行了演示。


📚2 运行结果


037ab3d664f2450099d26fa72143fd65.png


部分代码:

% Simulating data: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x0=zeros(2,ll); x0(:,1)=[0; 0]; % true trajectory
dt=.1*dT; nn=fix(dT/dt); % the integration time step is smaller than dT
% External input, estimated as parameter p later on:
z=(1:ll)/250*2*pi; z=-.4-1.01*abs(sin(z/2));
% 4th order Runge-Kutta integrator for FitzHugh-Nagumo system with external input:
for n=1:ll-1;
    xx=x0(:,n);
    for i=1:nn
        k1=dt*FitzHughNagumo_int(xx,z(n));
        k2=dt*FitzHughNagumo_int(xx+k1/2,z(n));
        k3=dt*FitzHughNagumo_int(xx+k2/2,z(n));
        k4=dt*FitzHughNagumo_int(xx+k3,z(n));
        xx=xx+k1/6+k2/3+k3/3+k4/6;
    end;
    x0(:,n+1)=xx;
end;
x=[z; x0]; % augmented state vector (notation a bit different to paper)
R=.2^2*var(FitzHughNagumo_obsfct(x))*eye(dy,dy); % observation noise covariance matrix
rng('default'); rng(0)
y=FitzHughNagumo_obsfct(x)+sqrtm(R)*randn(dy,ll); % noisy data
FitzHughNagumo_fct(dq,x); % this is just to suppress an erroneous warning and otherwise has no function
% Initial conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xhat=zeros(dx,ll);
xhat(:,2)=x(:,2); % first guess of x_1 set to observation
Q=.015; % process noise covariance matrix
Pxx=zeros(dx,dx,ll);
Pxx(:,:,1)=blkdiag(Q,R,R);
errors=zeros(dx,ll);
Ks=zeros(dx,dy,ll);  % Kalman gains
% Main loop for recursive estimation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for k=2:ll
    [xhat(:,k),Pxx(:,:,k),Ks(:,:,k)]=ut(xhat(:,k-1),Pxx(:,:,k-1),y(:,k),'FitzHughNagumo_fct','FitzHughNagumo_obsfct',dq,dx,dy,R);
    Pxx(1,1,k)=Q;
    errors(:,k)=sqrt(diag(Pxx(:,:,k)));
end; % k
% Results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
chisq=mean((x(1,:)-xhat(1,:)).^2+(x(2,:)-xhat(2,:)).^2+(x(3,:)-xhat(3,:)).^2);
disp(['Chi square = ',num2str(chisq)]);
% Showing last estimated parameter, used for example for the final estimate of a constant parameter:
% est=xhat(1:dq,ll)'; disp(['Estimated x = ' num2str(est)]);
% error=errors(1:dq,ll)'; disp(['Error = ' num2str(error)]);
figure(1)
subplot(2,1,1)
plot(y,'bd','MarkerEdgeColor','blue', 'MarkerFaceColor','blue','MarkerSize',3);
hold on;
plot(x(dq+1,:),'black','LineWidth',2);
%plot(xhat(dq+1,:),'r','LineWidth',2);
xlabel(texlabel('t'));
ylabel(texlabel('x_1, y'));
hold off;
axis tight
title('(a)')
drawnow
subplot(2,1,2)
plot(x(dq+2,:),'black','LineWidth',2);
hold on
plot(xhat(dq+2,:),'r','LineWidth',2);
plot(x(1,:),'black','LineWidth',2);
for i=1:dq; plot(xhat(i,:),'m','LineWidth',2); end;
for i=1:dq; plot(xhat(i,:)+errors(i,:),'m'); end;
for i=1:dq; plot(xhat(i,:)-errors(i,:),'m'); end;
xlabel(texlabel('t'));
ylabel(texlabel('z, estimated z, x_2, estimated x_2'));
hold off
axis tight
title('(b)')
function r=FitzHughNagumo_int(x,z)
% Function for modeling data, not for UKF execution
a=.7; b=.8; c=3.;
r=[c*(x(2)+x(1)-x(1)^3/3+z); -(x(1)-a+b*x(2))/c];
function r=FitzHughNagumo_obsfct(x)
% Observation function G(x)
    k1=dt*fc(xnl,p);
    k2=dt*fc(xnl+k1/2,p);


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1] Voss H U , Timmer J , Kurths J .NONLINEAR DYNAMICAL SYSTEM IDENTIFICATION FROM UNCERTAIN AND INDIRECT MEASUREMENTS[J].International Journal of Bifurcation and Chaos, 2011, 14(6):1905-1905.DOI:10.1142/S0218127404010345.


🌈4 Matlab代码及文献


相关文章
二阶锥松弛在配电网最优潮流计算中的应用matlab
二阶锥松弛在配电网最优潮流计算中的应用matlab
|
3月前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
4月前
|
算法
基于卡尔曼滤波的系统参数辨识matlab仿真
此程序采用卡尔曼滤波技术实现系统参数在线辨识,通过MATLAB 2022a仿真展现参数收敛过程、辨识误差,并比较不同信噪比下系统性能。卡尔曼滤波递归地结合历史估计与当前观测,优化状态估计。参数辨识中,系统参数被视为状态变量,通过迭代预测和更新步骤实现在线估计,有效处理了线性系统中的噪声影响。
106 12
|
6月前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
6月前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
111 8
|
5月前
|
算法 安全 数据挖掘
随机数生成方法及其在Matlab中的应用
随机数生成方法及其在Matlab中的应用
|
6月前
|
算法 数据可视化 数据挖掘
MATLAB中常用的数学函数及其应用示例
MATLAB中常用的数学函数及其应用示例
|
6月前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
70 0
|
6月前
|
资源调度 SoC
基于UKF无迹卡尔曼滤波的电池Soc估计matlab仿真
**摘要:** 使用MATLAB2022a,基于UKF的电池SOC估计仿真比较真实值,展示非线性滤波在电动车电池管理中的效用。电池电气模型描述电压、电流与SoC的非线性关系,UKF利用无迹变换处理非线性,通过预测和更新步骤实时估计SoC,优化状态估计。尽管UKF有效,但依赖准确模型参数。
|
7月前
|
机器学习/深度学习 编解码 监控
探索MATLAB在计算机视觉与深度学习领域的实战应用
探索MATLAB在计算机视觉与深度学习领域的实战应用
90 7