【改进的多同步挤压变换】基于改进多同步挤压的高分辨率时频分析工具,用于分析非平稳信号(Matlab代码实现)

简介: 【改进的多同步挤压变换】基于改进多同步挤压的高分辨率时频分析工具,用于分析非平稳信号(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码、数据、文章


💥1 概述

文献来源:


844fcc6f23a24595bd2437b6f7fa053a.png


该文提出一种高分辨率时频(TF)分析方法,用于强非平稳信号的分析。通过传统方法生成的TF表示通常过于模糊,无法为此类信号提供精确的特征。最近提出的一种称为多同步挤压变换(MSST)的方法克服了传统方法中存在的大多数问题,这似乎是一种很有前途的工具。但是,MSST仍然存在一个主要问题,即非重分配点问题,这可能导致一些特殊TF点的能量模糊问题。本文主要关注解决这个问题。研究发现,MSST中的此类问题是由重分配步骤的离散过程中的舍入操作引起的。然后采用一种有效的方法来使用简单的策略来解决这个问题。此外,研究中还提供了离散实现。数值分析表明,所提方法能够有效提高与MSST相当的能量浓度。与其他先进方法的比较还表明,所提出的方法在处理强非平稳信号和噪声附加信号方面具有更好的性能。在实验信号分析中,我们进行了三个实验,以验证所提方法在真实世界信号分析中的有效性。


原文摘要:


In this paper, a high-resolution time-frequency (TF) analysis method is presented for the analysis of strongly non-stationary signals. TF representations generated by conventional methods are usually too blurry to provide precise features for such signals. A recently proposed method, called multisynchrosqueezing transform (MSST), overcomes most of the problems that exist in conventional methods, which seems to be a promising tool. However, the MSST still has a major problem, i.e., non-reassigned point problem, which may lead to the blurry energy problem for some special TF points. This paper mainly focuses on resolving this problem. This study finds that such a problem in the MSST is caused by the rounding operation in the discrete procedure of the reassigned step. An effective method is then employed to address this problem using a simple strategy. Additionally, discrete implementation is provided in the study. The numerical analysis shows that our proposed method can effectively improve the energy concentration comparable to the MSST. Comparisons with other advanced methods also show that the proposed method offers better performance in addressing strongly non-stationary signals and noise-added signals. In the experimental signal analysis, we carry out three experiments to validate the effectiveness of the proposed method in the analysis of real-world signals.


有轴承缺陷的旋转机器通常会产生脉冲信号,振动传感器[1],[2],[3],[4],[5],[6],[7]。然而,当机器以可变速度运行时,振动信号处理变得具有挑战性。这是因为在这种情况下测量的信号通常表现出强烈的非平稳特性,即信号的频率随时间而变化很大。非平稳信号分析在旋转机械故障诊断中越来越受到关注。时频(TF)分析(TFA)技术具有应对此类挑战的强大能力。回顾TFA技术在旋转机械故障诊断中的发展的几篇文章可以在[8],[9],[10]中找到。从最近的研究中可以知道,能量浓度是评估TFA方法性能的关键指标[11]。这是因为集中TF表示(TFR)具有更好的表征信号故障特征的能力。然而,受海森堡不确定性原理的限制,传统的TFA方法,例如短时傅里叶变换(STFT),小波变换(WT)和S变换,在处理强时变信号时难以提供集中的结果。近几十年来,旨在克服传统方法缺点的各种新开发的TFA技术引起了广泛关注,例如,重新分配方法(RM)[12],同步挤压变换(SST)[13,14],解调SST(DSST)[15,16],高阶SST [17],[18],[19],同步提取变换(SET)[20,21]和多SST(MSST)[22]。


RM技术旨在根据信号的瞬时频率(IF)和群延迟的局部估计,将数据映射到更接近集中区域的新坐标[12],从而锐化能量涂抹的TFR。这种能量涂抹的TFR通常是由STFT,WT或S变换预先产生的。但是,RM 的映射应用于频谱图或标度图,通常定义为 STFT 或 WT 的平方幅度。这样的映射会丢失信号的相位信息,这也意味着无法从RM结果重建信号。作为一种类似RM的后处理技术,SST仅根据IF的估计值执行TFR映射,从而保留了逆能力。这使得SST在许多领域更具优势,例如机械故障诊断[23,24],地震信号分析[25,26]和呼吸动力学分析[27]。最近的各种研究侧重于在表征强时变信号时进一步增强SST技术的能力[13],[14],[15],[16],[17],[18],[19],[20],[21],[22]。


在线性TFA算法框架下提出了SST技术,例如WT,STFT和S变换。然而,受线性TF原子缺点的限制,线性TFA方法不能很好地处理强时变信号。相应的TF结果经常受到能量模糊问题的困扰。SST也面临同样的问题。解调技术设计非线性TF原子来表征时变信号,可以有效克服线性TFA方法的问题。此外,基于解调技术的新型SST方法在提高能量浓度方面显示出广阔的潜力。这种技术通常称为DSST方法[15,16]。然而,解调技术必须根据信号的先验信息设计非线性TF原子[9]。在实践中,很难甚至不可能提前确定真实世界信号的基本信息。这阻碍了DSST技术的工程应用。


提出了高阶SST方法来处理高度调频(FM)信号,该方法不需要事先提供有关信号的任何信息[17],[18],[19]。理论上,SST假设分析的信号应该是纯谐波信号。这意味着 SST 仅适用于处理微弱的 FM 信号。为了改善这种情况,在更复杂的信号模型上建立了高阶SST的框架,例如线性FM信号和高阶多项式FM信号。在无噪声情况下,高阶SST可以为强时变信号提供高度集中的结果。然而,最近的研究发现,高阶SST方法对噪声非常敏感。使用这种方法通常很难获得具有高噪声的信号的满意结果[22]。


SET方法旨在仅保留与信号时变特征密切相关的TF系数[20,21]。此外,SET消除了大多数弱相关的TF系数。因此,SET结果比SST结果更集中。但是,SET仅提供信号的近似重建。重建的性能随着信号非线性度的增加而降低。


最近发表的一篇论文介绍了MSST方法,该方法采用迭代程序来提高SST的能量浓度。MSST允许对信号进行完美的重建,不需要先验信息。[22]中的研究表明,在处理无噪声和加噪声信号时,MSST可以提供比RM,DSST和高阶SST更集中的结果。MSST方法似乎是实现理想TFR(ITFR)的有前途的工具[28]。然而,[22]的讨论部分指出,MSST方法中存在一个主要问题,即阻碍TF特征集中表征的非重分配点问题。


📚2 运行结果


212b43eb86144b3489629d108a275cda.png

9dd4fd6d0d904965aa0e6fa08150377a.png


部分代码:

function [Ts] = IMSST_Z(x,hlength,num)
% Computes the IMSST (Ts)  of the signal x.
% INPUT
%    x      :  Signal needed to be column vector.
%    hlength:  The length of window function.
%    num    :  iteration number.
% OUTPUT
%    Ts     :  The SST
%    tfr     :  The STFT
[xrow,xcol] = size(x);
if (xcol~=1),
    error('X must be column vector');
end;
if (nargin == 2),
    num=10;
end
if (nargin == 1),
    num=10;
    hlength=xrow/8;
end
hlength=hlength+1-rem(hlength,2);
ht = linspace(-0.5,0.5,hlength);ht=ht';
% Gaussian window
h = exp(-pi/0.32^2*ht.^2);
[hrow,~]=size(h); Lh=(hrow-1)/2;
N=xrow;
t=1:xrow;
tfr= zeros (round(N/2),N) ;
omega = zeros (round(N/2),N-1);
omega2 = zeros (round(N/2),N);
Ts = zeros (round(N/2),N);
%Compute STFT
for icol=1:N,
    ti= t(icol); tau=-min([round(N/2)-1,Lh,ti-1]):min([round(N/2)-1,Lh,xrow-ti]);
    indices= rem(N+tau,N)+1;
    rSig = x(ti+tau,1);
    tfr(indices,icol)=rSig.*conj(h(Lh+1+tau));
end;
tfr=fft(tfr);
tfr=tfr(1:round(N/2),:);
%2D IF of the SST
for i=1:round(N/2)


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。



🌈4 Matlab代码、数据、文章

相关文章
|
1月前
|
算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计
### 简介 本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。 核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。
127 76
|
2天前
|
算法
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
1月前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
1月前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
83 5
|
3月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
2月前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章