Python|基于粒子群和遗传算法的微电网优化调度

简介: Python|基于粒子群和遗传算法的微电网优化调度

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


2.1 粒子群优化算法求解结果


2.2 遗传算法求解结果


🎉3 参考文献


🌈4 Matlab代码、数据、文章讲解


💥1 概述

能源危机和环境污染是传统形式发电中存在的两个重要问题,而微电网可以在一定程度上减缓这两大问题[1] 。 微电网概念最早由美国电气可靠性技术协会(CERTS)提出[2] ,微电 网 是 由各种分布式电源、储能单元、负荷以及监控和保护装置组成的集合,具有灵活的运行方式和可调度性能,能在并网运行和孤岛运行两种模式间切换。 微电网的并网运行模式可以达到削峰填谷、


提高分布式能源利用率、发展友好型电网的目的,而微电网的孤岛运行模式可以有效解决孤岛及偏远地区用电难的问题。 分布式发电技术的应用, 使得微电网发电技术为解决现阶段全球变暖以及环境恶化、 不可再生能源的储量减少等环境问题提供了有效的方法。 微电网能量管理和优化调度问题作为微电网发展的重要研究方面,成为微电网不断推广的关键技术,因而具有重要的理论价值和工程价值。目前, 专家学者们在微电网的研究领域已取得了一定的成果,但微电网在优化调度、能量控制等方面还存在很多问题,针对这些问题,很多专家学者采用不同的算法、不同的研究模型对其进行了改进。 文献[3]详细介绍了微电网的概念、基本运行方式和控制策略, 分析了国外不同特点的典型微电网示范工程及实验测试系统;文献[4]采用粒子群算法,以污染气体排放和微电源的运行费用作为目标函数,建立优化模型,对微电网的负荷进行调度优化;文献[5]采用改进的自适应遗传算法,考虑微电源的燃料成本、维护成本与起动成本,以及动态的网络损耗量和购电、售电价格等因素建立模型,对孤网运行和并网运行两种情况进行优化仿真,实现了对微电网的负荷优化。


微电网的分布式电源主要由风力发电,光伏发电电池,微型燃气轮机,燃料电池等组成,首先我们对这主要的几种分布式电源建立数学模型,并加入相关的约束条件,以方便后期进行优化调度。微电网优化调度是通过所建立的分布式电源的数学模型以及约束条件,在这个前提下面,进行调度协调优化各个电源的发电及用电方式,达到微电网运行的灵活性和经济性。而粒子群算法具有收敛速度高,算法鲁棒性好,优化效率高的特点,因此可以将其引用到微电网经济调度优化。该算法最初是受到飞鸟集群活动的规律性启发,在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。通过粒子群算法对上述的各种分布式电源的数学模型以及相关约束条件进行带入,已建立运行成本的微电网经济优化为目标函数,寻找经济优化调度最优解,从而实现微电网经济调度最优化,可以先通过寻找y=x*sin(x)*cos(2x)-2*x*sin(3x)的最大值验证粒子群算法最优解的准确性,结果如图1所示,可以看到粒子群算法成功找到了最优解。




详细文章讲解和数学模型讲解见第4部分。


📚2 运行结果

2.1 粒子群优化算法求解结果




2.2 遗传算法求解结果



🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]高杰,邹必昌.基于粒子群算法的微电网经济优化调度[J].电子世界,2019(20):21+26.DOI:10.19353/j.cnki.dzsj.2019.20.006.


[2]储海兵.基于遗传算法的微电网优化调度[J].工业控制计算机,2019,32(02):151-153.


🌈4 Matlab代码、数据、文章讲解


相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
20 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
16天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
109 66
|
5天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
3天前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
11 2
|
20天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
53 20
|
14天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
13天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
18天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
47 5
|
18天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
52 0
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!