【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)

简介: 【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果



🎉3 参考文献


🌈4 Matlab代码、数据、文章讲解


💥1 概述

多 目标无功优化可在 目标 函数 中兼顾经济性和 电压稳定性,引起了研究人员的广泛关注。与单 目标无功优化 问题 的本质区别在于,多 目标无功优化的解不是唯一的,即不存在使经济性和 电压


稳定性同时达到最优的解,而是存在一个非劣解的集合,称为帕累托(Pareto)最优集,集合中的元素就所有 目标而言是不可 比较的。当前多 目标无功优化问题的求解方法大致可分为以下 2类 :


1)先验法 。通过事先设置反映各 目标偏好程度 的参数将多 目标无功优化模 型转化成单 目标优


化 问题进行求解,常用 的方法有线性加权法[11-12]和模糊集理论[13-14]。这类方法虽然便于计算,但存在明显的缺点:权重 向量或隶属度函数难 以确定;每次计算只能得到一个控制方案,若要得到一组近似的 Pareto最优解 ,则需进行多次计算;对 Pareto前沿的形状敏感 ,若问题 的 Pareto前沿是非凸集,则很难搜索到完整的 Pareto最优集。


2)后验法。该方法 的特 点是无需事先给出 目标函数之 间的优先关系 ,运行人员只需从 Pareto最


优集 中选择出满足要求 的控制方案。因此快速地获取具有 良好分布且范围宽广 的 Pareto前沿成为关键 。文献 [15.16]分 别应用 强度 Pareto 进化 算法 (strengthParetoevolutionaryalgorithm,SPEA)及 其改进版本 SPEA2来求得 Pareto最优集;文献提出采用 NSGA—II来获取 Pareto前沿 ;另外 以 PSO为框架的多 目标优化技术也被用来求解多 目标无功优化问题。然而上述算法常存在易陷入局部最优 、非劣解分布不均匀、控制参数难以选择等缺 陷。


多目标差分优化算法见第4部分。


📚2 运行结果

图1为改进的IEEE33节点配电系统,在保持线路参数不变的前提下,增加﹖组并联补偿电容器和2个分布式电源。


e3f1296b4e064049af69f93f76bbeb55.png


假定每个分布式电源能发出1MW的有功功率,且这②个分布式电源无功出力在-100~500 kvar区间内而且可调节;并联补偿电容器的补偿容量定为150 kvarx4和150 kvar×7。


cc072ce632ed494f8102a22db7cb018a.png


部分代码:

% data=[1    2    0.0922    0.047    100    60    0
% 2    3    0.493    0.2511    (90-1000)    40    0
% 3    4    0.366    0.1864    120    80    0
% 4    5    0.3811    0.1941    60    30    0
% 5    6    0.819    0.707    60    20    0
% 6    7    0.1872    0.6188    200    (100-0*150)    0
% 7    8    0.7114    0.2351    200    100    0
% 8    9    1.03    0.74    60    20    0
% 9    10    1.044    0.74    60    20    0
% 10    11    0.1966    0.065    45    30    0
% 11    12    0.3744    0.1238    60    35    0
% 12    13    1.468    1.155    60    35    0
% 13    14    0.5416    0.7129    120    80    0
% 14    15    0.591    0.526    60    10    0
% 15    16    0.7463    0.545    60    20    0
% 16    17    1.289    1.721    60    20    0
% 17    18    0.372    0.574    90    40    0
% 2    19    0.164    0.1565    90    40    0
% 19    20    1.5042    1.3554    90    40    0
% 20    21    0.4095    0.4784    90    40    0
% 21    22    0.7089    0.9373    90    40    0
% 3    23    0.4512    0.3083    90    50    0
% 23    24    0.898    0.7091    420    200    0
% 24    25    0.896    0.7011    420    200    0
% 6    26    0.203    0.1034    60    25    0
% 26    27    0.2842    0.1447    60    25    0
% 27    28    1.059    0.9337    60    20    0
% 28    29    0.8042    0.7006    120    70    0
% 29    30    0.5075    0.2585    200    600    0
% 30    31    0.9744    0.963    150    70    0
% 31    32    0.3105    0.3619    210    (100-0*150)    0
% 32    33    0.341    0.5362    60    40    0
% 8    21    2    2    0    0    0
% 9    15    2    2    0    0    0
% 12    22    2    2    0    0    0
% 18    33    0.5    0.5    0    0    0
% 25    29    0.5    0.5    0    0    0
% ];
Y=1./Z;
Y00=zeros(1,33);
Sload=zeros(1,33);%各个母线负荷
for j=1:32
    Sload(data(j,2))=data(j,5)+data(j,6)*i;
end
Sload=Sload/1000;
PQDGnun=0;
PVnun=0;
PQVDGnun=0;
PQVDGposition=[31];
PQVrePower=[0.5];
PQVmaxmin=[0.5;0];
PVposition=[22];%PV节点的位置
PVrePower=[0.5];
PVmaxmin=[0.5;0];%PV节点无功上下限
PVreacPower=[0.25]; %PV节点无功补偿的初始无功功率
PQDGposition=[7];
PQDGpower=[0.5+0.5i];
U=zeros(1,33)+10;%设置节点的电压初值
U(1)=12.66;
if PQVDGnun>0
   for j=1:PQVDGnun
        PQVreacPower(j)=-U(PQVDGposition(j))*U(PQVDGposition(j))/38+(-U(PQVDGposition(j))*U(PQVDGposition(j))+sqrt(U(PQVDGposition(j))^4-4*real(PQVrePower(j))*real(PQVrePower(j))*1.95*1.95))/(2*1.95);
   end
else
    PQVreacPower=0.5;%0.5没有任何意义,在后面也没有用到这个数字
end


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]邱威,张建华,刘念.自适应多目标差分进化算法在计及电压稳定性的无功优化中的应用[J].电网技术,2011,35(08):81-87.DOI:10.13335/j.1000-3673.pst.2011.08.021.


🌈4 Matlab代码、数据、文章讲解


相关文章
|
机器学习/深度学习 传感器 算法
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
|
机器学习/深度学习 传感器 算法
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
|
7天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
4天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
10天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
12天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
20天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
15天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。