【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)

简介: 【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果



🎉3 参考文献


🌈4 Matlab代码、数据、文章讲解


💥1 概述

多 目标无功优化可在 目标 函数 中兼顾经济性和 电压稳定性,引起了研究人员的广泛关注。与单 目标无功优化 问题 的本质区别在于,多 目标无功优化的解不是唯一的,即不存在使经济性和 电压


稳定性同时达到最优的解,而是存在一个非劣解的集合,称为帕累托(Pareto)最优集,集合中的元素就所有 目标而言是不可 比较的。当前多 目标无功优化问题的求解方法大致可分为以下 2类 :


1)先验法 。通过事先设置反映各 目标偏好程度 的参数将多 目标无功优化模 型转化成单 目标优


化 问题进行求解,常用 的方法有线性加权法[11-12]和模糊集理论[13-14]。这类方法虽然便于计算,但存在明显的缺点:权重 向量或隶属度函数难 以确定;每次计算只能得到一个控制方案,若要得到一组近似的 Pareto最优解 ,则需进行多次计算;对 Pareto前沿的形状敏感 ,若问题 的 Pareto前沿是非凸集,则很难搜索到完整的 Pareto最优集。


2)后验法。该方法 的特 点是无需事先给出 目标函数之 间的优先关系 ,运行人员只需从 Pareto最


优集 中选择出满足要求 的控制方案。因此快速地获取具有 良好分布且范围宽广 的 Pareto前沿成为关键 。文献 [15.16]分 别应用 强度 Pareto 进化 算法 (strengthParetoevolutionaryalgorithm,SPEA)及 其改进版本 SPEA2来求得 Pareto最优集;文献提出采用 NSGA—II来获取 Pareto前沿 ;另外 以 PSO为框架的多 目标优化技术也被用来求解多 目标无功优化问题。然而上述算法常存在易陷入局部最优 、非劣解分布不均匀、控制参数难以选择等缺 陷。


多目标差分优化算法见第4部分。


📚2 运行结果

图1为改进的IEEE33节点配电系统,在保持线路参数不变的前提下,增加﹖组并联补偿电容器和2个分布式电源。


e3f1296b4e064049af69f93f76bbeb55.png


假定每个分布式电源能发出1MW的有功功率,且这②个分布式电源无功出力在-100~500 kvar区间内而且可调节;并联补偿电容器的补偿容量定为150 kvarx4和150 kvar×7。


cc072ce632ed494f8102a22db7cb018a.png


部分代码:

% data=[1    2    0.0922    0.047    100    60    0
% 2    3    0.493    0.2511    (90-1000)    40    0
% 3    4    0.366    0.1864    120    80    0
% 4    5    0.3811    0.1941    60    30    0
% 5    6    0.819    0.707    60    20    0
% 6    7    0.1872    0.6188    200    (100-0*150)    0
% 7    8    0.7114    0.2351    200    100    0
% 8    9    1.03    0.74    60    20    0
% 9    10    1.044    0.74    60    20    0
% 10    11    0.1966    0.065    45    30    0
% 11    12    0.3744    0.1238    60    35    0
% 12    13    1.468    1.155    60    35    0
% 13    14    0.5416    0.7129    120    80    0
% 14    15    0.591    0.526    60    10    0
% 15    16    0.7463    0.545    60    20    0
% 16    17    1.289    1.721    60    20    0
% 17    18    0.372    0.574    90    40    0
% 2    19    0.164    0.1565    90    40    0
% 19    20    1.5042    1.3554    90    40    0
% 20    21    0.4095    0.4784    90    40    0
% 21    22    0.7089    0.9373    90    40    0
% 3    23    0.4512    0.3083    90    50    0
% 23    24    0.898    0.7091    420    200    0
% 24    25    0.896    0.7011    420    200    0
% 6    26    0.203    0.1034    60    25    0
% 26    27    0.2842    0.1447    60    25    0
% 27    28    1.059    0.9337    60    20    0
% 28    29    0.8042    0.7006    120    70    0
% 29    30    0.5075    0.2585    200    600    0
% 30    31    0.9744    0.963    150    70    0
% 31    32    0.3105    0.3619    210    (100-0*150)    0
% 32    33    0.341    0.5362    60    40    0
% 8    21    2    2    0    0    0
% 9    15    2    2    0    0    0
% 12    22    2    2    0    0    0
% 18    33    0.5    0.5    0    0    0
% 25    29    0.5    0.5    0    0    0
% ];
Y=1./Z;
Y00=zeros(1,33);
Sload=zeros(1,33);%各个母线负荷
for j=1:32
    Sload(data(j,2))=data(j,5)+data(j,6)*i;
end
Sload=Sload/1000;
PQDGnun=0;
PVnun=0;
PQVDGnun=0;
PQVDGposition=[31];
PQVrePower=[0.5];
PQVmaxmin=[0.5;0];
PVposition=[22];%PV节点的位置
PVrePower=[0.5];
PVmaxmin=[0.5;0];%PV节点无功上下限
PVreacPower=[0.25]; %PV节点无功补偿的初始无功功率
PQDGposition=[7];
PQDGpower=[0.5+0.5i];
U=zeros(1,33)+10;%设置节点的电压初值
U(1)=12.66;
if PQVDGnun>0
   for j=1:PQVDGnun
        PQVreacPower(j)=-U(PQVDGposition(j))*U(PQVDGposition(j))/38+(-U(PQVDGposition(j))*U(PQVDGposition(j))+sqrt(U(PQVDGposition(j))^4-4*real(PQVrePower(j))*real(PQVrePower(j))*1.95*1.95))/(2*1.95);
   end
else
    PQVreacPower=0.5;%0.5没有任何意义,在后面也没有用到这个数字
end


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]邱威,张建华,刘念.自适应多目标差分进化算法在计及电压稳定性的无功优化中的应用[J].电网技术,2011,35(08):81-87.DOI:10.13335/j.1000-3673.pst.2011.08.021.


🌈4 Matlab代码、数据、文章讲解


相关文章
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
20 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
15天前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
16天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。