基于典型相关分析的故障检测和过程监控算法研究(Matlab代码实现)

简介: 基于典型相关分析的故障检测和过程监控算法研究(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:


96dfd82931c7d83ecf3c1680f0d2d407.png


本文首先研究了一种基于广义典型相关分析(CCA)的故障检测(FD)方法,旨在在可接受的误报率下最大限度地提高故障检测能力。更具体地说,生成两个残差信号,分别用于检测输入和输出子空间中的故障。两个残差信号的最小协方差是通过考虑输入和输出之间的相关性来实现的。考虑到广义CCA由于过程噪声的高斯假设而应用范围有限,提出了一种广义CCA与基于随机算法的阈值设置相结合的FD技术,并将其应用于高速列车的模拟牵引驱动控制系统。结果表明,与标准的广义CCAFD方法相比,所提方法能够显著提高检测性能。


📚2 运行结果


d6ab0df04a4e7aaec2600f126810f83c.png


部分代码:

%% ----------------------- CCA algorithm ----------------------------------
[U, S, V, P,P_res, L,L_res] = cca_fun_static(In_trc,Out_trc);
%% *********************** building statistics for CCA-based FD ***********
%% ----------------------- statistic of CCA residual form 1----------------
% ~~~~~~~~~ for Q statistic
rs=[]; % residual signal
Omega = S(1:rank(S),1:rank(S));
for j = 1:N_free
te1 = P'*In_trc(:,j)-Omega*L'*Out_trc(:,j); % Q statistic
rs=[rs te1];
end
cov_rs = (N_free-1)^-1*rs*rs'; % covariance of Q
%% ----------------------- statistic of CCA residual form 1 from PPT -----
T2_rdin = [];
tempinv = (eye(size(Omega,1))-Omega^2); tempinv = diag(tempinv);
if ~isempty(P_res) % determine the P_res matrix is empty or not
tempeye = diag(eye(size(P_res,2)));
tempi = [tempinv; tempeye];
else
tempi = tempinv;
end
Inv_s = inv(diag(tempi)/(n_s-1));
for j = 1:N_fault
te1 = [P P_res]'*In_trfc(:,j)-S*[L L_res]'*Out_trfc(:,j); % residual L'y-\SigmaJ'u
te2 = te1'*Inv_s*te1; % for T2
T2_rdin=[T2_rdin te2];
end
alpha = 0.05; % significance level
Th_T2_cca_rd = chi2inv(1-alpha,size(Inv_s,1));
%% ----------------------- statistic of CCA residual form 2 from PPT -----
T2_rdin2 = [];
tempinv = (eye(size(Omega,1))-Omega^2); tempinv = diag(tempinv);
if ~isempty(L_res) % determine the L_res matrix is empty or not
tempeye = diag(eye(size(L_res,2)));
tempi = [tempinv; tempeye];
else
tempi = tempinv;
end
Inv_s2 = inv(diag(tempi)/(n_s-1));
for j = 1:N_fault
te1 = [L L_res]'*Out_trfc(:,j)-S'*[P P_res]'*In_trfc(:,j); % residual J'u-\Sigma'L'y
te2 = te1'*Inv_s2*te1; % for T2
T2_rdin2=[T2_rdin2 te2];
end
Th_T2_cca_rd2 = chi2inv(1-alpha,size(Inv_s2,1));
%% ========== detection results of CCA-based FD ===========================
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
figure
subplot(2,1,1)
plot_FD_result(T2_rdin,Th_T2_cca_rd,2,12,1);
ylabel('T2_{ccadin}');
title('Detection result of CCA','FontSize',12);
subplot(2,1,2)
plot_FD_result(T2_rdin2,Th_T2_cca_rd2,2,12,1);
ylabel('T2_{ccadin2}');
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Zhiwen Chen, Steven X. Ding, Tao Peng, Chunhua Yang and Weihua Gui. Fault detection for non-Gaussian process using generalized canonical correlation analysis and randomized algorithms. IEEE Transactions on Industrial Electronics, 65(2): 1559-1567, 2018.


🌈4 Matlab代码实现


相关文章
|
1月前
|
监控 算法 安全
基于 PHP 语言深度优先搜索算法的局域网网络监控软件研究
在当下数字化时代,局域网作为企业与机构内部信息交互的核心载体,其稳定性与安全性备受关注。局域网网络监控软件随之兴起,成为保障网络正常运转的关键工具。此类软件的高效运行依托于多种数据结构与算法,本文将聚焦深度优先搜索(DFS)算法,探究其在局域网网络监控软件中的应用,并借助 PHP 语言代码示例予以详细阐释。
42 1
|
1月前
|
存储 监控 算法
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
29 3
|
1月前
|
存储 监控 算法
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
44 3
|
1月前
|
存储 算法 JavaScript
基于 Node.js 深度优先搜索算法的上网监管软件研究
在数字化时代,网络环境呈现出高度的复杂性与动态性,上网监管软件在维护网络秩序与安全方面的重要性与日俱增。此类软件依托各类数据结构与算法,实现对网络活动的精准监测与高效管理。本文将深度聚焦于深度优先搜索(DFS)算法,并结合 Node.js 编程语言,深入剖析其在上网监管软件中的应用机制与效能。
35 6
|
1月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
8月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
329 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
8月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
200 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
8月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
277 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
11月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章

下一篇
oss创建bucket